scholarly journals A susceptibility-based rainfall threshold approach for landslide occurrence

Author(s):  
Elise Monsieurs ◽  
Olivier Dewitte ◽  
Alain Demoulin

Abstract. Rainfall threshold determination is a pressing issue in the landslide scientific community. While main improvements have been made towards more reproducible techniques for the identification of triggering conditions for landsliding, the now well-established rainfall intensity or event – duration thresholds for landsliding suffer from several limitations. Here, we propose a new approach of the frequentist method for threshold definition based on satellite-derived antecedent rainfall estimates directly coupled with landslide susceptibility data. Adopting a bootstrap statistical technique for the identification of threshold uncertainties at different exceedance probability levels, it results in thresholds expressed as AR = (α ± ∆α) * S(β ± ∆β), where AR is antecedent rainfall (mm), S is landslide susceptibility, α and β are scaling parameters, and ∆α and ∆β are their uncertainties. The main improvements of this approach consist in: (1) using spatially continuous satellite rainfall data, (2) giving equal weight to rainfall characteristics and ground susceptibility factors in the definition of spatially varying rainfall thresholds, (3) proposing an exponential antecedent rainfall function that involves past daily rainfall in the exponent to account for the different lasting effect of large versus small rainfall, (4) quantitatively exploiting the lower parts of the cloud of data points, most meaningful for threshold estimation, and (5) merging the uncertainty on landslide date with the fit uncertainty in a single error estimation. We apply our approach in the western branch of the East African Rift based on landslides that occurred between 2001 and 2018, satellite rainfall estimates from the Tropical Rainfall Measurement Mission Multi-satellite Precipitation Analysis (TMPA 3B42 RT), and the continental-scale map of landslide susceptibility of Broeckx et al. (2018) and provide first regional rainfall thresholds for landsliding in tropical Africa.

2019 ◽  
Vol 19 (4) ◽  
pp. 775-789 ◽  
Author(s):  
Elise Monsieurs ◽  
Olivier Dewitte ◽  
Alain Demoulin

Abstract. Rainfall threshold determination is a pressing issue in the landslide scientific community. While major improvements have been made towards more reproducible techniques for the identification of triggering conditions for landsliding, the now well-established rainfall intensity or event-duration thresholds for landsliding suffer from several limitations. Here, we propose a new approach of the frequentist method for threshold definition based on satellite-derived antecedent rainfall estimates directly coupled with landslide susceptibility data. Adopting a bootstrap statistical technique for the identification of threshold uncertainties at different exceedance probability levels, it results in thresholds expressed as AR = (α±Δα)⋅S(β±Δβ), where AR is antecedent rainfall (mm), S is landslide susceptibility, α and β are scaling parameters, and Δα and Δβ are their uncertainties. The main improvements of this approach consist in (1) using spatially continuous satellite rainfall data, (2) giving equal weight to rainfall characteristics and ground susceptibility factors in the definition of spatially varying rainfall thresholds, (3) proposing an exponential antecedent rainfall function that involves past daily rainfall in the exponent to account for the different lasting effect of large versus small rainfall, (4) quantitatively exploiting the lower parts of the cloud of data points, most meaningful for threshold estimation, and (5) merging the uncertainty on landslide date with the fit uncertainty in a single error estimation. We apply our approach in the western branch of the East African Rift based on landslides that occurred between 2001 and 2018, satellite rainfall estimates from the Tropical Rainfall Measurement Mission Multi-satellite Precipitation Analysis (TMPA 3B42 RT), and the continental-scale map of landslide susceptibility of Broeckx et al. (2018) and provide the first regional rainfall thresholds for landsliding in tropical Africa.


Author(s):  
Bappaditya Koley ◽  
Anindita Nath ◽  
Subhajit Saraswati ◽  
Kaushik Bandyopadhyay ◽  
Bidhan Chandra Ray

Land sliding is a perennial problem in the Eastern Himalayas. Out of 0.42 million km2 of Indian landmass prone to landslide, 42% fall in the North East Himalaya, specially Darjeeling and Sikkim Himalaya. Most of these landslides are triggered by excessive monsoon rainfall between June and October in almost every year. Various attempts in the global scenario have been made to establish rainfall thresholds in terms of intensity – duration of antecedent rainfall models on global, regional and local scale for triggering of the landslide. This paper describes local aspect of rainfall threshold for landslides based on daily rainfall data in and around north Sikkim road corridor region. Among 210 Landslides occurring from 2010 to 2016 were studied to analyze rainfall thresholds. Out of the 210 landslides, however, only 155 Landslides associated with rainfall data which were analyzed to yield a threshold relationship between rainfall intensity-duration and landslide initiation. The threshold relationship determined fits to lower boundary of the Landslide triggering rainfall events is I = 4.045 D - 0.25 (I=rainfall intensity (mm/h) and D=duration in (h)), revealed that for rainfall event of short time (24 h) duration with a rainfall intensity of 1.82 mm/h, the risk of landslides on this road corridor of the terrain is expected to be high. It is also observed that an intensity of 58 mm and 139 mm for 10-day and 20-day antecedent rainfall are required for the initiation of landslides in the study area. This threshold would help in improvement on traffic guidance and provide safety to the travelling tourists in this road corridor during the monsoon.


2021 ◽  
Author(s):  
Luísa Vieira Lucchese ◽  
Guilherme Garcia de Oliveira ◽  
Olavo Correa Pedrollo

<p>Rainfall-induced landslides have caused destruction and deaths in South America. Accessing its triggers can help researchers and policymakers to understand the nature of the events and to develop more effective warning systems. In this research, triggering rainfall for rainfall-induced landslides is evaluated. The soil moisture effect is indirectly represented by the antecedent rainfall, which is an input of the ANN model. The area of the Rolante river basin, in Rio Grande do Sul state, Brazil, is chosen for our analysis. On January 5<sup>th</sup>, 2017, an extreme rainfall event caused a series of landslides and debris flows in this basin. The landslide scars were mapped using satellite imagery. To calculate the rainfall that triggered the landslides, it was necessary to compute the antecedent rainfall that occurred within the given area. The use of satellite rainfall data is a useful tool, even more so if no gauges are available for the location and time of the rainfall event, which is the case. Remote sensing products that merge the data from in situ stations with satellite rainfall data are increasingly popular. For this research, we employ the data from MERGE (Rozante et al., 2010), that is one of these products, and is focused specifically on Brazilian gauges and territory. For each 12.5x12.5m raster pixel, the rainfall is interpolated to the points and the rainfall volume from the last 24h before the event is accumulated. This is added as training data in our Artificial Neural Network (ANN), along with 11 terrain attributes based on ALOS PALSAR (ASF DAAC, 2015) elevation data and generated by using SAGA GIS. These attributes were presented and analyzed in Lucchese et al. (2020). Sampling follows the procedure suggested in Lucchese et al. (2021, in press). The ANN model is a feedforward neural network with one hidden layer consisting of 20 neurons. The ANN is trained by backpropagation method and cross-validation is used to ensure the correct adjustment of the weights. Metrics are calculated on a separate sample, called verification sample, to avoid bias. After training, and provided with relevant information, the ANN model can estimate the 24h-rainfall thresholds in the region, based on the 2017 event only. The result is a discretized map of rainfall thresholds defined by the execution of the trained ANN. Each pixel of the resulting map should represent the volume of rainfall in 24h necessary to trigger a landslide in that point. As expected, lower thresholds (30 - 60 mm) are located in scarped slopes and the regions where the landslides occurred. However, lowlands and the plateau, which are areas known not to be prone to landslides, show higher rainfall thresholds, although not as high as expected (75 - 95 mm). Mean absolute error for this model is 16.18 mm. The inclusion of more variables and events to the ANN training should favor achieving more reliable outcomes, although, our results are able to show that this methodology has potential to be used for landslide monitoring and prediction.</p>


2021 ◽  
Author(s):  
Guoqiang Jia ◽  
Stefano Luigi Gariano ◽  
Qiuhong Tang

<p>A better detection of landslide occurrence is critical for disaster prevention and mitigation, and a standing pursuit owing to increasing and widespread impact of slope failures on human activities and natural environment in a changing world. However, the detection of rainfall-induced landslide is limited in some areas by data scarcity and method applicability. In this study, we proposed distributed rainfall thresholds within homogeneous slope units, by considering the interaction of landslide-influencing geo-environmental conditions and landslide-triggering rainfall variables. Homogeneous slope units are extracted based on detailed terrain analysis. Various landforms are identified and used to obtain slope units with homogeneous slope traits. The concept behind the distributed rainfall threshold models is that rainfall threshold for landslide occurrence varies with geo-environmental conditions such as slope gradient. Thus, a link can be established between landslide-influencing geo-environmental conditions and landslide-triggering rainfall variables. We used elevation, slope, plan and profile curvature, mean annual precipitation and temperature, soil texture and land cover as independent variables. Rainfall duration and cumulated rainfall of landslide-triggering rainfall events are automatically calculated and used, the former as one of independent variables, and the latter as the dependent variable. A support vector regression (SVR) and a multiple linear regression (MLR) method are used. The error and correlation coefficient measurement indicate a better performance of SVR method. Compared with grid units, the model scores high accuracy for slope units. The models are implemented at a regional scale (Guangdong, China). The SVR model in slope units ran with error of 0.16 mm and correlation coefficient of 0.93.</p>


2020 ◽  
Author(s):  
Ascanio Rosi ◽  
Samuele Segoni ◽  
Veronica Tofani ◽  
Filippo Catani

<p>Landslide forecasting and early warning at regional scale are difficult task and they are usually accomplished by the mean of statistical approaches aimed to define rainfall thresholds and landslide susceptibility maps.<br> Landslide susceptibility maps are based on the analysis of predisposing factors to assess the spatial probability of landslide occurrence, while rainfall thresholds are based on the correlation, valid on a wide area, between landslide occurrence and triggering factors, which usually are a couple of rainfall parameters, such as rainfall duration and intensity.<br>Susceptibility maps are static map that can be used for the spatial prediction of the most landslide prone areas, nut cannot be used to predict the temporal occurrence of a landslide triggering.<br>Rainfall thresholds can be used for temporal prediction, but with a coarse spatial resolution (usually some hundreds or thousands of km<sup>2</sup>), and the reference areas could contains both plains and hillslopes, so the alerts could involves both areas, even if landslides are improbable in river plains; this means that rainfall thresholds are not very suitable to identify the most probable triggering sites.<br>Rainfall thresholds and susceptibility maps can be therefore conveniently combined into dynamic hazard matrixes to obtain spatio-temporal forecasts of landslide hazard.<br>To combine these inputs, they are combined in a purposely-built hazard matrix, where each parameter is classified into 3 classes: landslide susceptibility map has been classified in S1 (low susceptibility), S2 (medium susceptibility) and S3 (high susceptibility), while rainfall rate has been classified in the classes R1, R2 and R3, by the definition of 2 rainfall thresholds.<br>The combination of the aforementioned classes allowed to define a matrix with 5 hazard classes, from H0 (null hazard) to H4 (high hazard), which was calibrated so that there was not any landslide in the H0 class and that the 90% of the landslide were in H2-H4 classes.<br>The result of this procedure is a dynamic hazard map, where the hazard, which is calculated for each pixel, can change over the time, based on rainfall rate variations.<br>For operational purposes, such a map cannot be used, since the pixel based resolution is too fine to be used during an emergency or to plan any activity in the planification phase, so the results have been aggregated at municipality scale, which is more easily readable for the end-users as local administrators and decision makers.<br>In this way it is possible to overcome the issues due to the stillness of susceptibility maps and to the coarse spatial resolution of rainfall thresholds, also avoiding results which could be hardly understandable outside of the scientific community.<br>This procedure was tested in a test site located in Northern Tuscany (Italy) and the work showed the possibility of obtaining results which are balanced between the scientific soundness and the needs of end-users like mayors, local administrators and civil protection personnel.</p><p> </p>


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1616 ◽  
Author(s):  
Abhirup Dikshit ◽  
Raju Sarkar ◽  
Biswajeet Pradhan ◽  
Saroj Acharya ◽  
Kelzang Dorji

Consistently over the years, particularly during monsoon seasons, landslides and related geohazards in Bhutan are causing enormous damage to human lives, property, and road networks. The determination of thresholds for rainfall triggered landslides is one of the most effective methods to develop an early warning system. Such thresholds are determined using a variety of rainfall parameters and have been successfully calculated for various regions of the world at different scales. Such thresholds can be used to forecast landslide events which could help in issuing an alert to civic authorities. A comprehensive study on the determination of rainfall thresholds characterizing landslide events for Bhutan is lacking. This paper focuses on defining event rainfall–duration thresholds for Chukha Dzongkhag, situated in south-west Bhutan. The study area is chosen due to the increase in frequency of landslides during monsoon along Phuentsholing-Thimphu highway, which passes through it and this highway is a major trade route of the country with the rest of the world. The present threshold method revolves around the use of a power law equation to determine event rainfall–duration thresholds. The thresholds have been established using available rainfall and landslide data for 2004–2014. The calculated threshold relationship is fitted to the lower boundary of the rainfall conditions leading to landslides and plotted in logarithmic coordinates. The results show that a rainfall event of 24 h with a cumulated rainfall of 53 mm can cause landslides. Later on, the outcome of antecedent rainfall varying from 3–30 days was also analysed to understand its effect on landslide incidences based on cumulative event rainfall. It is also observed that a minimum 10-day antecedent rainfall of 88 mm and a 20-day antecedent rainfall of 142 mm is required for landslide occurrence in the area. The thresholds presented can be improved with the availability of hourly rainfall data and the addition of more landslide data. These can also be used as an early warning system especially along the Phuentsholing–Thimphu Highway to prevent any disruptions of trade.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 494 ◽  
Author(s):  
Shuangshuang He ◽  
Jun Wang ◽  
Songnan Liu

A rainfall threshold for landslide occurrence at a national scale in China has rarely been developed in the early warning system for landslides. Based on 771 landslide events that occurred in China during 1998–2017, four groups of rainfall thresholds at different quantile levels of the quantile regression for landslide occurrences in China are defined, which include the original rainfall event–duration (E–D) thresholds and normalized (the accumulated rainfall is normalized by mean annual precipitation) (EMAP–D) rainfall thresholds based on the merged rainfall and the Climate Prediction Center Morphing technique (CMORPH) rainfall products, respectively. Each group consists of four sub-thresholds in rainy season and non-rainy season, and both are divided into short duration (<48 h) and long duration (≥48 h). The results show that the slope of the regression line for the thresholds in the events with long durations is larger than that with short durations. In addition, the rainfall thresholds in the non-rainy season are generally lower than those in the rainy season. The E–D thresholds defined in this paper are generally lower than other thresholds in previous studies on a global scale, and a regional or national scale in China. This might be due to there being more landslide events used in this paper, as well as the combined effects of special geological environment, climate condition and human activities in China. Compared with the previous landslide model, the positive rates of the rainfall thresholds for landslides have increased by 16%–20%, 10%–17% and 20%–38% in the whole year, rainy season and non-rainy season, respectively.


2020 ◽  
Vol 20 (11) ◽  
pp. 2905-2919
Author(s):  
Elena Leonarduzzi ◽  
Peter Molnar

Abstract. Rainfall thresholds are a simple and widely used method to forecast landslide occurrence. We provide a comprehensive data-driven assessment of the effects of rainfall temporal resolution (hourly versus daily) on rainfall threshold performance in Switzerland, with sensitivity to two other important aspects which appear in many landslide studies – the normalisation of rainfall, which accounts for local climatology, and the inclusion of antecedent rainfall as a proxy of soil water state prior to landsliding. We use an extensive landslide inventory with over 3800 events and several daily and hourly, station, and gridded rainfall datasets to explore different scenarios of rainfall threshold estimation. Our results show that although hourly rainfall did show the best predictive performance for landslides, daily data were not far behind, and the benefits of hourly resolutions can be masked by the higher uncertainties in threshold estimation connected to using short records. We tested the impact of several typical actions of users, like assigning the nearest rain gauge to a landslide location and filling in unknown timing, and we report their effects on predictive performance. We find that localisation of rainfall thresholds through normalisation compensates for the spatial heterogeneity in rainfall regimes and landslide erosion process rates and is a good alternative to regionalisation. On top of normalisation by mean annual precipitation or a high rainfall quantile, we recommend that non-triggering rainfall be included in rainfall threshold estimation if possible. Finally, while antecedent rainfall threshold approaches used at the local scale are not successful at the regional scale, we demonstrate that there is predictive skill in antecedent rain as a proxy of soil wetness state, despite the large heterogeneity of the study domain.


2017 ◽  
Vol 19 (1) ◽  
pp. 58-74
Author(s):  
THIEBES Benni ◽  
BAI Shibiao ◽  
XI Yanan ◽  
GLADE Thomas ◽  
BELL Rainer

On the regional scale, investigations on future landslide can broadly be distinguished in spatial or temporal analyses, i.e. landslide susceptibility or hazard maps, and landslide triggering rainfall thresholds. Even though both approaches have its uses e.g. in spatial planning, risk management and early warning, they also have limitations. Susceptibility and hazard maps do not contain information on when landslides will be triggered, while rainfall thresholds give no detailed indication on where a landslide might take place. The combination of spatial and temporal landslide research remains a complex issue and no ready-to-use methodology for combined spatiotemporal landslide analyses is presently available. In our study, we present a simple matrix approach to combine spatial and temporal landslide probabilities and highlight its application for a case study in the Wudu region, China. Landslide susceptibility mapping is based on a previous study involving logistic regression; the analysis of rainfall threshold was carried out applying the daily rainfall model. A 4x4 matrix was used to combine and reclassify the spatial and temporal landslide information. The results are then plotted on a map to highlight the susceptibility for rainfall events with varying likelihood of triggering landslides.


Sign in / Sign up

Export Citation Format

Share Document