scholarly journals Lagrange form of the nonlinear Schrödinger equation for low-vorticity waves in deep water

2017 ◽  
Vol 24 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Anatoly Abrashkin ◽  
Efim Pelinovsky

Abstract. The nonlinear Schrödinger (NLS) equation describing the propagation of weakly rotational wave packets in an infinitely deep fluid in Lagrangian coordinates has been derived. The vorticity is assumed to be an arbitrary function of Lagrangian coordinates and quadratic in the small parameter proportional to the wave steepness. The vorticity effects manifest themselves in a shift of the wave number in the carrier wave and in variation in the coefficient multiplying the nonlinear term. In the case of vorticity dependence on the vertical Lagrangian coordinate only (Gouyon waves), the shift of the wave number and the respective coefficient are constant. When the vorticity is dependent on both Lagrangian coordinates, the shift of the wave number is horizontally inhomogeneous. There are special cases (e.g., Gerstner waves) in which the vorticity is proportional to the squared wave amplitude and nonlinearity disappears, thus making the equations for wave packet dynamics linear. It is shown that the NLS solution for weakly rotational waves in the Eulerian variables may be obtained from the Lagrangian solution by simply changing the horizontal coordinates.

2016 ◽  
Author(s):  
Anatoly Abrashkin ◽  
Efim Pelinovsky

Abstract. The nonlinear Schrödinger equation (NLS equation) describing weakly rotational wave packets in an infinity-depth fluid in the Lagrangian coordinates is derived. The vorticity is assumed to be an arbitrary function of the Lagrangian coordinates and quadratic in the small parameter proportional to the wave steepness. It is proved that the modulation instability criteria of the low-vorticity waves and deep water potential waves coincide. All the known solutions of the NLS equation for rogue waves are applicable to the low-vorticity waves. The effect of vorticity is manifested in a shift of the wave number in the carrier wave. In case of vorticity dependence on the vertical Lagrangian coordinate only (the Gouyon waves) this shift is constant. In a more general case, where the vorticity is dependent on both Lagrangian coordinates, the shift of the wave number is horizontally heterogeneous. There is a special case with the Gerstner waves where the vorticity is proportional to the square of the wave amplitude, and the resulting non-linearity disappears, thus making the equations of the dynamics of the Gerstner wave packet linear. It is shown that the NLS solution for weakly rotational waves in the Eulerian variables can be obtained from the Lagrangian solution by the ordinary change of the horizontal coordinates.


2009 ◽  
Vol 87 (6) ◽  
pp. 675-684 ◽  
Author(s):  
A. M. Abourabia ◽  
M. A. Mahmoud ◽  
G. M. Khedr

We present solutions to the problem of waves propagating at an interface between two inviscid fluids of infinite extent and differing densities. The method of multiple scale is employed to obtain a dispersion relation and nonlinear Schrödinger (NLS) equation, which describes the behavior of the system for the fluid interface. The dispersion relation of the model NLS equation is studied. The solutions of the NLS equation are derived analytically by using the complex tanh-function method and the function transformation method into a sine-Gordon equation. Also, diagrams are drawn to illustrate the elevation of the interface, the slip velocity, and the conservation of power. We observe that the elevation of the interface is in the form of traveling quasi-solitary waves that decrease as the wave number increases. We see that the slip velocities also bring a nonlinear and periodic characters. Finally, we observe that the conservation of power is in the form of traveling waves. Also, as the wave number increases, the conservation of power is more accurate in fluctuating around zero.


2014 ◽  
Vol 69 (8-9) ◽  
pp. 441-445 ◽  
Author(s):  
Long-Xing Li ◽  
Jun Liu ◽  
Zheng-De Dai ◽  
Ren-Lang Liu

In this work, the rational homoclinic solution (rogue wave solution) can be obtained via the classical homoclinic solution for the nonlinear Schrödinger (NLS) equation and the coupled nonlinear Schrödinger (CNLS) equation, respectively. This is a new way for generating rogue wave comparing with direct constructing method and Darboux dressing technique


Author(s):  
Mostafa M. A. Khater

This paper studies novel analytical solutions of the extended [Formula: see text]-dimensional nonlinear Schrödinger (NLS) equation which is also known with [Formula: see text]-dimensional complex Fokas ([Formula: see text]D–CF) system. Fokas derived this system in 1994 by using the inverse spectral method. This model is considered as an icon model for nonlinear pulse propagation in monomode optical fibers. Many novel computational solutions are constructed through two recent analytical schemes (Ansatz and Projective Riccati expansion (PRE) methods). These solutions are represented through sketches in 2D, 3D, and contour plots to demonstrate the dynamical behavior of pulse propagation in breather, rogue, periodic, lump, and solitary characteristics. The stability property of the obtained solutions is examined based on the Hamiltonian system’s properties. The obtained solutions are checked by putting them back into the original equation through Mathematica 12 software.


2019 ◽  
Vol 33 (27) ◽  
pp. 1950333
Author(s):  
Xiao-Song Tang ◽  
Biao Li

We consider a generalized fourth-order nonlinear Schrödinger (NLS) equation. Based on the ansatz method, its bright, dark single-soliton is constructed under some constraint conditions. Furthermore, combining the Riccati equation extension approach, we also derive some exact singular solutions. With several parameters to play with, we display the dynamic behaviors of bright, dark single-soliton. Finally, the condition for the modulational instability (MI) of continuous wave solutions for the equation is generated. It is hoped that our results can help enrich the nonlinear dynamics of the NLS equations.


2018 ◽  
Vol 29 (14) ◽  
pp. 1850099 ◽  
Author(s):  
Qing Ding ◽  
Shiping Zhong

In this paper, by using the [Formula: see text]-structure on Im[Formula: see text] from the octonions [Formula: see text], the [Formula: see text]-binormal motion of curves [Formula: see text] in [Formula: see text] associated to the almost complex structure on [Formula: see text] is studied. The motion is proved to be equivalent to Schrödinger flows from [Formula: see text] to [Formula: see text], and also to a nonlinear Schrödinger-type system (NLSS) in three unknown complex functions that generalizes the famous correspondence between the binormal motion of curves in [Formula: see text] and the focusing nonlinear Schrödinger (NLS) equation. Some related geometric properties of the surface [Formula: see text] in Im[Formula: see text] swept by [Formula: see text] are determined.


2018 ◽  
Vol 32 (28) ◽  
pp. 1850310 ◽  
Author(s):  
Le Xin ◽  
Ying Kong ◽  
Lijia Han

In this paper, we consider the variable-coefficient power-law nonlinear Schrödinger equations (NLSEs) with external potential as well as the gain or loss function. First, we generalize the similarity transformation method, which converts the variable coefficient NLSE with two power-law nonlinear terms to the autonomous dual-power NLS equation with constant coefficients. Then, we obtain the exact solutions of the variable-coefficient NLSE. Moreover, we discuss the solitary-wave solutions for equations with vanishing potential, space-quadratic potential and optical lattice potential, which are applied to many branches of physics.


2015 ◽  
Vol 70 (12) ◽  
pp. 1039-1048 ◽  
Author(s):  
Jing Yu ◽  
Jingwei Han ◽  
Jingsong He

AbstractIn this paper, the determinant representation of the n-fold binary Darboux transformation, which is a 2×2 matrix, for the Ablowitz–Kaup–Newell–Segur equation is constructed. In this 2×2 matrix, each element is expressed by (2n+1)-order determinants. When the reduction condition r=–q̅ is considered, we obtain one of binary Darboux transformations for the nonlinear Schrödinger (NLS) equation. As its applications, several solutions are constructed for the NLS equation. Especially, a new form of two-soliton is given explicitly.


2013 ◽  
Vol 27 (29) ◽  
pp. 1350216 ◽  
Author(s):  
JINGWEI HAN ◽  
JING YU ◽  
JINGSONG HE

The determinant expression T[N] of a new Darboux transformation (DT) for the Ablowitz–Kaup–Newell–Segur equation are given in this paper. By making use of this DT under the reduction r = q*, we construct determinant expressions of dark N-soliton solution for the defocusing NLS equation. Except known one-soliton, we provide smooth two-soliton and smooth N-soliton on a certain domain of parameter for the defocusing NLS equation.


2019 ◽  
Vol 33 (10) ◽  
pp. 1850121 ◽  
Author(s):  
Xiu-Bin Wang ◽  
Bo Han

In this work, a variable coefficient nonlinear Schrödinger (vc-NLS) equation is under investigation, which can describe the amplification or absorption of pulses propagating in an optical fiber with distributed dispersion and nonlinearity. By means of similarity reductions, a similar transformation helps us to relate certain class of solutions of the standard NLS equation to the solutions of integrable vc-NLS equation. Furthermore, we analytically consider nonautonomous breather wave, rogue wave solutions and their interactions in the vc-NLS equation, which possess complicated wave propagation in time and differ from the usual breather waves and rogue waves. Finally, the main characteristics of the rational solutions are graphically discussed. The parameters in the solutions can be used to control the shape, amplitude and scale of the rogue waves.


Sign in / Sign up

Export Citation Format

Share Document