scholarly journals Linking drought indices to impacts in the Liaoning Province of China

Author(s):  
Miaomiao Ma ◽  
Juan Lv ◽  
Zhicheng Su ◽  
Jamie Hannaford ◽  
Hongquan Sun ◽  
...  

Abstract. Drought is an inherent meteorological characteristic of any given region, but is particularly important in China due to its monsoon climate and the “three ladder” landform system. The Chinese government has constructed large-scale water conservation projects since 1949, and developed drought and water scarcity relief frameworks. However, drought still causes huge impacts on water supply, environment and agriculture. China has, therefore, created specialized agencies for drought management called Flood Control and Drought Relief Headquarters, which include four different levels: state, provincial, municipal and county. The impact datasets they collect provide an effective resource for drought vulnerability assessment, and provide validation options for hydro-meteorological indices used in risk assessment and drought monitoring. In this study, we use the statistical drought impact data collected by the Liaoning province Drought Relief Headquarter and meteorological drought indices (Standardized Precipitation Index, SPI and Standard Precipitation Evaporation Index, SPEI) to explore a potential relationship between drought impacts and these indices. The results show that SPI-24 and SPEI-24 are highly correlated to the populations that have difficulties in obtaining drinking water in four out of the six cities studied. Three impacts related to reservoirs and the availability of drinking water for humans and livestock exhibit strong correlations with SPI and SPEI of different accumulated periods. Results reveal that meteorological indices used for drought monitoring and early warning in China can be effectively linked to drought impacts. Further work is exploring how this information can be used to optimize drought monitoring and risk assessment in the whole Liaoning province and elsewhere in China.

2020 ◽  
Vol 20 (3) ◽  
pp. 889-906
Author(s):  
Yaxu Wang ◽  
Juan Lv ◽  
Jamie Hannaford ◽  
Yicheng Wang ◽  
Hongquan Sun ◽  
...  

Abstract. Drought is a ubiquitous and recurring hazard that has wide-ranging impacts on society, agriculture and the environment. Drought indices are vital for characterising the nature and severity of drought hazards, and there have been extensive efforts to identify the most suitable drought indices for drought monitoring and risk assessment. However, to date, little effort has been made to explore which index (or indices) best represents drought impacts for various sectors in China. This is a critical knowledge gap, as impacts provide important ground truth information for indices used in monitoring activities. The aim of this study is to explore the link between drought indices and drought impacts, using Liaoning province (northeast China) as a case study due to its history of drought occurrence. To achieve this we use independent, but complementary, methods (correlation and random forest analysis) to identify which indices link best to drought impacts for prefectural-level cities in Liaoning province, using a comprehensive database of reported drought impacts in which impacts are classified into a range of categories. The results show that the standardised precipitation evapotranspiration index with a 6-month accumulation (SPEI6) had a strong correlation with all categories of drought impacts, while the standardised precipitation index with a 12-month accumulation (SPI12) had a weak correlation with drought impacts. Of the impact datasets, “drought-suffering area” and “drought impact area” had a strong relationship with all drought indices in Liaoning province, while “population and number of livestock with difficulty in accessing drinking water” had weak correlations with the indices. The results of this study can support drought planning efforts in the region and provide context for the indices used in drought-monitoring applications, so enabling improved preparedness for drought impacts. The study also demonstrates the potential benefits of routine collection of drought impact information on a local scale.


2019 ◽  
Author(s):  
Yaxu Wang ◽  
Juan Lv ◽  
Jamie Hannaford ◽  
Yicheng Wang ◽  
Hongquan Sun ◽  
...  

Abstract. Drought is a ubiquitous and reoccurring hazard that has wide ranging impacts on society, agriculture and the environment. Drought indices are vital for characterizing the nature and severity of drought hazards, and there have been extensive efforts to identify the most suitable drought indices for drought monitoring and risk assessments. However, to date, little effort has been made to explore which index(s) best represents drought impacts for various sectors in China. This is a critical knowledge gap, as impacts provide important ‘ground truth’ information. They can be used to demonstrate whether drought indices (used for monitoring or risk assessment) are relevant for identifying impacts, thus highlighting if an area is vulnerable to drought of a given severity. The aim of this study is to explore the link between drought indices and drought impacts, using Liaoning province (northeast China) as a case study due to its history of drought occurrence. To achieve this we use independent, but complementary, methods (correlation and random forest analysis). Using multiple drought indices – Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Soil Moisture (SoilM) and the Normalized Difference Vegetation Index (NDVI) – and drought impact data (on crop yield, livestock, rural people and the economy) correlation and random forest analysis were used to identify which indices link best to the recorded drought impacts for cities in Liaoning. The results show that the relationship varies between different categories of drought impacts and between cities. SPEI with a 6-month accumulation (SPEI6) had a strong correlation with all categories of drought impacts, while SPI12 had a weak correlation with drought impacts. Of the impact datasets, drought suffering area and drought impact area had a slightly strong relationship with all drought indices in Liaoning province, while population and number of livestock with difficulty in accessing drinking water had weak correlations with the indices. Based on the linkage, drought vulnerability was analyzed using various vulnerability factors. Crop cultivated area was positively correlated to the drought vulnerability for five out of the eight categories of drought impacts, while the total population had a strong negative relationship with drought vulnerability for half the drought impact categories. This study can support drought planning efforts in the region, and provides a methodology for application for other regions of China (and other countries) in the future, as well as providing context for the indices used in drought monitoring applications, so enabling improved preparedness for drought impacts.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Svetlana Stevović

The Drina River has always been a source of drinking water and irrigation for food production, with all its tributaries and branching catchment area across the territories of Bosnia and Herzegovina, Montenegro and Serbia. It has connected peoples and cultures for centuries with its bridges. At the same time, with its great head, the Drina has always represented a significant hydropower potential. Throughout history, numerous watermills have been built on it. Currently, there are several constructed hydro-technical facilities on the Drina and in its catchment area. Among them, the most important are dams, with roads over them, associated hydroelectric power plants and belonging structures for flood control, water intakes for drinking water or irrigation. Due to multiple possible, almost always conflicting purposes, as well as several states, entities and other stakeholders, the management of Drina River water resources from the angle of the water-food-energy and climate nexus is an extremely complex problem. In addition to the impact on hydropower, agriculture, forestry, transport, irrigation and drainage, tourism and socio-cultural events, the construction of such strategic structures has also an impact on the climate of the Western Balkans. The issue of optimization within the nexus of the water-food-energy-climate requires holistic research to find synergistic solutions. These solutions are certainly a compromise. But inevitably, they must meet the criteria of sustainable development and the requirements of reducing global warming, according to the set conditions of the adopted European Green Plan for the Western Balkans. This paper proposes a methodology for finding optimal/compromise hydropower solutions, which synergistically include all parameters of influence. Holistic research of sustainable hydropower systems on the Drina River, from the angle of the water-food-energyclimate nexus, is presented. Particularly detailed analyses of the course of the river between the towns of Foča and Goražde, as well as the downstream part between Zvornik and mouth, known as the Lower Drina. In these sections, the most pronounced conflict is whether water will be used for drinking and/or food production and/or energy production and what impact possible solutions have on the climate of the region.


Author(s):  
Yijun Shi ◽  
Guofang Zhai ◽  
Shutian Zhou ◽  
Yuwen Lu ◽  
Wei Chen ◽  
...  

Flood disasters often have serious impacts on cities. Disaster prevention and mitigation schemes for flood disasters must be based on risk assessment. We constructed an indicator system for flood disaster risk assessment from the aspects of hazard factors, sensitivity to the environment, disaster vulnerability, flood disaster prevention, and resilience. Then we add the precipitation factor as a scenario parameter to the assessment of flood disasters, in order to assess the flood disaster risk under annual average precipitation scenarios, multi-year flood season average precipitation scenarios, and large typhoon precipitation scenarios. Xiamen is one of the cities with more serious flood disasters. We select Xiamen as an example and refer to existing indicators of flood disaster assessment. The results show that: (1) the coefficient of variation of flood disasters in Xiamen under the impact of large-scale typhoon precipitation is large; (2) the drainage and flood control capacity of Xiamen is generally insufficient, and the risk in the old city is high; (3) there are many flood-prone locations in Xiamen. Underpass interchanges, underground spaces, and urban villages have become the new key areas for flood control; and (4) the flood risk in the northern mountainous areas of Xiamen is the highest. Based on the assessment results, we further delineate the urban flood control zones and propose corresponding countermeasures. The study expands the research on flood disaster risk assessment, and also provides reference for relevant cities to deal with flood disasters.


2020 ◽  
Author(s):  
Maral Habibi ◽  
Wolfgang Schöner ◽  
Iman Babaeian

<p><strong>Abstract</strong></p><p>In this study, droughts were assessed for the Uremia Lake Basin located in the North West of Iran which is facing the risk of drying over the last decades. Since long-term and spatially dense observational data are not available, in particular for the mountainous part of the Uremia lake basin, we successfully tested the performance of the ERA5 reanalysis data set for our purpose. By comparing time series plots of drought indices (SPI, SPEI), both indices were able to capture the temporal variation of droughts. SPIE identified more drought events but SPI, as it uses precipitation only as input, fails to show the increasing number of evaporation driven droughts in the Uremia Lake Basin, which were observed in particular for the most recent decade. SPEI was calculated using the monthly temperature and precipitation, the extremely dry conditions of the basin were observed in the mountainous area, it seems that based on SPEI index, the highest values of actual evapotranspiration happens near the lake and in high mountains. Moreover, in recent years, drought has become more extreme in higher elevated areas, then we focused on Snow cover which has a significant role in surface runoff and groundwater recharge in mountainous and semi-arid areas, like within the Uremia lake basin. In recent years climate change impact snow variations distribution, snow cover, and runoff in different scales. Therefore, spatial and temporal monitoring of the snow-covered surface and the impact of these changes is necessary. Consequently, the chances of snow cover (SCA) in the study area were studied using MODIS images by the NDSI index and snow cover data from the ERA5 dataset. Finally, we came to this conclusion that the temperature rise in recent decades led to a high amount of evaporation and consequently the snow surface area has decreased so that it could affect the region’s water reservoir in the future.</p><p>Key words: Drought monitoring,ERA5,MODIS,SPI,SPEI,NDSI</p>


2010 ◽  
Vol 10 (5) ◽  
pp. 783-792 ◽  
Author(s):  
I. Slavik ◽  
W. Uhl ◽  
J. Völker ◽  
H. Lohr ◽  
M. Funke ◽  
...  

Dammed water reservoirs for drinking water production with their catchment areas and rivers downstream represent dynamic systems that change constantly and are subject to many influences. An optimized management considering and weighing up the various demands on raw water reservoirs (long-term storage for drinking water supply, flood control, ecological state of the rivers downstream, energy production, nature conservation and recreational uses) against each other is therefore very difficult. Thus, an optimal reservoir management has to take into account scenarios of possibly occurring external influences and to permit predictions of prospective raw water qualities, respectively. Furthermore, the impact of short and long term changes in raw water quality on subordinate processes should be considered. This approach was followed in the work presented here, as there currently is no tool available to predict and evaluate the impacts of raw water reservoir management strategies integratively. The strategy supported by the newly developed decision support procedure takes into account all aspects from water quality, flood control and drinking water treatment to environmental quality downstream the reservoir. Furthermore, possible extreme events or changes of boundary conditions (e.g. climate change) can be considered.


Sign in / Sign up

Export Citation Format

Share Document