Supplementary material to "Rheological stratification in impure rocksalt during long-term creep: morphology, microstructure and numerical models of multilayer folds in the Ocnele Mari salt mine, Romania"

Author(s):  
Marta Adamuszek ◽  
Dan M. Tămaș ◽  
Jessica Barabasch ◽  
Janos L. Urai
Solid Earth ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 2041-2065
Author(s):  
Marta Adamuszek ◽  
Dan M. Tămaş ◽  
Jessica Barabasch ◽  
Janos L. Urai

Abstract. At laboratory timescales, rock salt samples with different composition and microstructure show variance in steady-state creep rates, but it is not known if and how this variance is manifested at low strain rates and corresponding deviatoric stresses. Here, we aim to quantify this from the analysis of multilayer folds that developed in rock salt over geological timescale in the Ocnele Mari salt mine in Romania. The formation is composed of over 90 % of halite, while distinct multiscale layering is caused by variation in the fraction of impurities. Regional tectonics and mine-scale fold structure are consistent with deformation in a shear zone after strong shearing in a regional detachment, forming over 10 m scale chevron folds of a tectonically sheared sedimentary layering, with smaller folds developing on different scales in the hinges. Fold patterns at various scales clearly indicate that during folding, the sequence was mechanically stratified. The dark layers contain more impurities and are characterised by a more regular layer thickness compared to the bright layers and are thus inferred to have higher viscosities. Optical microscopy of gamma-decorated samples shows a strong shape-preferred orientation of halite grains parallel to the foliation, which is reoriented parallel to the axial plane of the folds studied. Microstructures indicate dislocation creep, together with extensive fluid-assisted recrystallisation and strong evidence for solution–precipitation creep. This provides support for linear (Newtonian) viscous rheology as a dominating deformation mechanism during the folding. Deviatoric stress during folding was lower than during shearing in the detachment at around 1 MPa. We investigate fold development on various scales in a representative multilayer package using finite-element numerical models, constrain the relative layer thicknesses in a selected outcrop, and design a numerical model. We explore the effect of different Newtonian viscosity ratios between the layers on the evolving folds on different scales. By comparing the field data and numerical results, we estimate that the effective viscosity ratio between the layers was larger than 10 and up to 20. Additionally, we demonstrate that the considerable variation of the layer thicknesses is not a crucial factor to develop folds on different scales. Instead, unequal distribution of the thin layers, which organise themselves into effectively single layers with variable thickness, can control deformation on various scales. Our results show that impurities can significantly change the viscosity of rock salt deforming at low deviatoric stress and introduce anisotropic viscosity, even in relatively pure layered rock.


2021 ◽  
pp. 228947
Author(s):  
Gokhan Gurbuz ◽  
Caglar Bayik ◽  
Saygin Abdikan ◽  
Kurtulus Sedar Gormus ◽  
Senol Hakan Kutoglu

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Angelo Solimini ◽  
F. Filipponi ◽  
D. Alunni Fegatelli ◽  
B. Caputo ◽  
C. M. De Marco ◽  
...  

AbstractEvidences of an association between air pollution and Covid-19 infections are mixed and inconclusive. We conducted an ecological analysis at regional scale of long-term exposure to air-borne particle matter and spread of Covid-19 cases during the first wave of epidemics. Global air pollution and climate data were calculated from satellite earth observation data assimilated into numerical models at 10 km resolution. Main outcome was defined as the cumulative number of cases of Covid-19 in the 14 days following the date when > 10 cumulative cases were reported. Negative binomial mixed effect models were applied to estimate the associations between the outcome and long-term exposure to air pollution at the regional level (PM10, PM2.5), after adjusting for relevant regional and country level covariates and spatial correlation. In total we collected 237,749 Covid-19 cases from 730 regions, 63 countries and 5 continents at May 30, 2020. A 10 μg/m3 increase of pollution level was associated with 8.1% (95% CI 5.4%, 10.5%) and 11.5% (95% CI 7.8%, 14.9%) increases in the number of cases in a 14 days window, for PM2.5 and PM10 respectively. We found an association between Covid-19 cases and air pollution suggestive of a possible causal link among particulate matter levels and incidence of COVID-19.


1983 ◽  
Vol 105 (3) ◽  
pp. 273-276 ◽  
Author(s):  
C. E. Pugh

A summary is given of the constitutive equations that have been developed for use in design assessments of elevated temperature components of liquid metal fast breeder reactors. The discussion addresses representations of short-term (plastic) and long-term (creep) inelastic material responses. Attention is given to improved representations of the interactions between plastic and creep deformations. Most of the discussion is in terms of constitutive equations that make use of the concept of separating the total strain into elastic, plastic, and creep portions. Additionally, some discussion is given of progress being made toward establishing design equations based on unified measures of inelastic strain that do not distinguish different strain portions.


2006 ◽  
Vol 519-521 ◽  
pp. 1041-1046 ◽  
Author(s):  
Brian Wilshire ◽  
H. Burt ◽  
N.P. Lavery

The standard power law approaches widely used to describe creep and creep fracture behavior have not led to theories capable of predicting long-term data. Similarly, traditional parametric methods for property rationalization also have limited predictive capabilities. In contrast, quantifying the shapes of short-term creep curves using the q methodology introduces several physically-meaningful procedures for creep data rationalization and prediction, which allow straightforward estimation of the 100,000 hour stress rupture values for the aluminum alloy, 2124.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada ◽  
Kiyoshi Kubo ◽  
Hideaki Kushima

Influence of stress on creep deformation and degradation behavior has been investigated. Corresponding to inflection of stress vs. time to rupture curve, difference in recovery phenomena, that was homogeneous in short-term and inhomogeneous in long-term, was observed. Inflection of stress vs. time to rupture curve took place at the stress condition corresponding to half of 0.2% offset yield stress at the temperature. Elastic limit stress of Grade 91 steel was evaluated to be 150MPa at 600°C and 100MPa at 650°C, by means of stress abrupt change test. These stresses were found to be almost the same as half of 0.2% offset yield stress at the temperatures. Inflection of stress vs. time to rupture curve is caused by transient of applied stress from higher level than elastic limit to within elastic range. It has been concluded that long-term creep strength of ferritic creep resistant steels should be predicted from the selected creep rupture data under the stresses lower than elastic limit by considering half of 0.2% offset yield stress at the temperature, by means of Larson-Miller parameter with a constant of 20.


2010 ◽  
Vol 37 (4) ◽  
pp. 600-610 ◽  
Author(s):  
Vladan Kuzmanovic ◽  
Ljubodrag Savic ◽  
John Stefanakos

This paper presents two-dimensional (2D) and three-dimensional (3D) numerical models for unsteady phased thermal analysis of RCC dams. The time evolution of a thermal field has been modeled using the actual dam shape, RCC technology and the adequate description of material properties. Model calibration and verification has been done based on the field investigations of the Platanovryssi dam, the highest RCC dam in Europe. The results of a long-term thermal analysis, with actual initial and boundary conditions, have shown a good agreement with the observed temperatures. The influence of relevant parameters on the thermal field of RCC dams has been analyzed. It is concluded that the 2D model is appropriate for the thermal phased analysis, and that the boundary conditions and the mixture properties are the most influential on the RCC dam thermal behavior.


Sign in / Sign up

Export Citation Format

Share Document