scholarly journals On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth

2017 ◽  
Vol 11 (4) ◽  
pp. 1949-1965 ◽  
Author(s):  
Michiel M. Helsen ◽  
Roderik S. W. van de Wal ◽  
Thomas J. Reerink ◽  
Richard Bintanja ◽  
Marianne S. Madsen ◽  
...  

Abstract. The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model EC-Earth by taking a constant value for areas with thick perennial snow cover. This is an important reason why the surface mass balance (SMB) of the Greenland ice sheet (GrIS) is poorly resolved in the model. The purpose of this study is to improve the SMB forcing of the GrIS by evaluating different parameter settings within a snow albedo scheme. By allowing ice-sheet albedo to vary as a function of wet and dry conditions, the spatial distribution of albedo and melt rate improves. Nevertheless, the spatial distribution of SMB in EC-Earth is not significantly improved. As a reason for this, we identify omissions in the current snow albedo scheme, such as separate treatment of snow and ice and the effect of refreezing. The resulting SMB is downscaled from the lower-resolution global climate model topography to the higher-resolution ice-sheet topography of the GrIS, such that the influence of these different SMB climatologies on the long-term evolution of the GrIS is tested by ice-sheet model simulations. From these ice-sheet simulations we conclude that an albedo scheme with a short response time of decaying albedo during wet conditions performs best with respect to long-term simulated ice-sheet volume. This results in an optimized albedo parameterization that can be used in future EC-Earth simulations with an interactive ice-sheet component.

2016 ◽  
Author(s):  
Michiel Helsen ◽  
Roderik Van de Wal ◽  
Thomas Reerink ◽  
Richard Bintanja ◽  
Marianne Sloth Madsen ◽  
...  

Abstract. The albedo of the surface of ice sheets changes as a function of time, due to the effects of deposition of new snow, ageing of dry snow, melting and runoff. Currently, the calculation of the albedo of ice sheets is highly parameterized within the Earth System Model EC-Earth, by taking a constant value for areas with thick perennial snow cover. This is one of the reasons that the surface mass balance (SMB) of the Greenland ice sheet (GrIS) is poorly resolved in the model. To improve this, eight snow albedo schemes are evaluated here. The resulting SMB is downscaled from the lower resolution global climate model topography to the higher resolution ice sheet topography of the GrIS, such that the influence of these different SMB climatologies on the long-term evolution of the GrIS is tested by ice sheet model simulations. This results in an optimised albedo parameterization that can be used in future EC-Earth simulations with an interactive ice sheet component.


1997 ◽  
Vol 25 ◽  
pp. 250-258 ◽  
Author(s):  
Starley L. Thompson ◽  
David Pollard

AbstractAt the Last Glacial Maximum (LGM) about 21000 years ago (21 ka BP), the overall mass balance of the Laurentide and Eurasian ice sheets should have been close to zero, since their rate of change of total ice volume was approximately zero at that time. The surface mass balance should have been zero or positive to balance any iceberg/iceshelf discharge and basal melting, but could not have been strongly negative. In principle this can be tested by global climate model (GCM) simulations with prescribed ice-sheet extents and topography.We describe results from a suite of 21 ka BP simulations using a new GCM (GENESIS version 2.0.a), with sea-surface temperatures (SSTs) prescribed from GLIMAP (1981) and predicted by a mixed-layer ocean model, and with ice sheets prescribed from both the ICE-4G (Peltier, 1994) and CLIMAP (1981) reconstructions. This GCM is well suited for ice-sheet mass-balance studies because (i) the surface can be represented at a finer resolution than the atmospheric GCM, (ii) an elevation correction accounts for spectral distortions of the atmospheric GCM topography, (iii) a simple post-processing correction for the refreezing of meltwater is applied, and (iv) the model's precipitation and mass balances for present-day Greenland and Antarctica are realistic. However, for all reasonable combinations of SSTs and ice-sheet configurations, the predicted annual surface mass balances of the LGM Laurentide and Eurasian ice sheets are implausibly negative. Possible reasons for this discrepancy are discussed, including increased ice-age aerosols, higher CLIMAP-like ice-sheet profiles in the few thousand years preceding the LGM, and a surface of the southern Laurentide just before the LGM to produce fleetingly the ICE-4G profile at 21 ka BP.


2012 ◽  
Vol 6 (2) ◽  
pp. 1531-1562 ◽  
Author(s):  
J. H. van Angelen ◽  
J. T. M. Lenaerts ◽  
S. Lhermitte ◽  
X. Fettweis ◽  
P. Kuipers Munneke ◽  
...  

Abstract. We present a sensitivity study of the surface mass balance (SMB) of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo parameterization. The snow albedo parameterization uses grain size as a prognostic variable and further depends on cloud cover, solar zenith angle and black carbon concentration. For the control experiment the overestimation of absorbed shortwave radiation (+6 %) at the K-transect (West Greenland) for the period 2004–2009 is considerably reduced compared to the previous density-dependent albedo parameterization (+22 %). To simulate realistic snow albedo values, a small concentration of black carbon is needed. A background ice albedo field derived from MODIS imagery improves the agreement between the modeled and observed SMB gradient along the K-transect. The effect of enhanced retention and refreezing is a decrease of the albedo due to an increase in snow grain size. As a secondary effect of refreezing the snowpack is heated, enhancing melt and further lowering the albedo. Especially in a warmer climate this process is important, since it reduces the refreezing potential of the firn layer covering the Greenland Ice Sheet.


2016 ◽  
Author(s):  
Pepijn Bakker ◽  
Andreas Schmittner

Abstract. State-of-the-science global climate models show that global warming is likely to weaken the Atlantic Meridional Overturning Circulation (AMOC). While such models are arguably the best tools to perform AMOC projections, they do not allow a comprehensive uncertainty assessment because of limited computational resources. Here we present an AMOC-emulator, a box model with a number of free parameters that can be tuned to mimic the sensitivity of the AMOC to climate change of a specific global climate model. The AMOC-emulator (M-AMOC1.0) is applied to simulations of global warming and melting of the Greenland Ice Sheet, performed with an intermediate complexity model. Predictive power of the AMOC-emulator is shown by comparison with a number of additional warming and Greenland Ice Sheet melt scenario that have not been used in the tuning of the AMOC-emulator, highlighting the potential of the AMOC-emulator to assess the uncertainty in AMOC projections.


2012 ◽  
Vol 6 (5) ◽  
pp. 1175-1186 ◽  
Author(s):  
J. H. van Angelen ◽  
J. T. M. Lenaerts ◽  
S. Lhermitte ◽  
X. Fettweis ◽  
P. Kuipers Munneke ◽  
...  

Abstract. We present a sensitivity study of the surface mass balance (SMB) of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme. The snow albedo scheme uses grain size as a prognostic variable and further depends on cloud cover, solar zenith angle and black carbon concentration. For the control experiment the overestimation of absorbed shortwave radiation (+6%) at the K-transect (west Greenland) for the period 2004–2009 is considerably reduced compared to the previous density-dependent albedo scheme (+22%). To simulate realistic snow albedo values, a small concentration of black carbon is needed, which has strongest impact on melt in the accumulation area. A background ice albedo field derived from MODIS imagery improves the agreement between the modeled and observed SMB gradient along the K-transect. The effect of enhanced meltwater retention and refreezing is a decrease of the albedo due to an increase in snow grain size. As a secondary effect of refreezing the snowpack is heated, enhancing melt and further lowering the albedo. Especially in a warmer climate this process is important, since it reduces the refreezing potential of the firn layer that covers the Greenland Ice Sheet.


2018 ◽  
Vol 12 (9) ◽  
pp. 2981-2999 ◽  
Author(s):  
Jiangjun Ran ◽  
Miren Vizcaino ◽  
Pavel Ditmar ◽  
Michiel R. van den Broeke ◽  
Twila Moon ◽  
...  

Abstract. The Greenland Ice Sheet (GrIS) is currently losing ice mass. In order to accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE), surface mass balance (SMB) output of the Regional Atmospheric Climate Model v. 2 (RACMO2), and ice discharge estimates to analyze the mass budget of Greenland at various temporal and spatial scales. We find that the mean rate of mass variations in Greenland observed by GRACE was between −277 and −269 Gt yr−1 in 2003–2012. This estimate is consistent with the sum (i.e., -304±126 Gt yr−1) of individual contributions – surface mass balance (SMB, 216±122 Gt yr−1) and ice discharge (520±31 Gt yr−1) – and with previous studies. We further identify a seasonal mass anomaly throughout the GRACE record that peaks in July at 80–120 Gt and which we interpret to be due to a combination of englacial and subglacial water storage generated by summer surface melting. The robustness of this estimate is demonstrated by using both different GRACE-based solutions and different meltwater runoff estimates (namely, RACMO2.3, SNOWPACK, and MAR3.9). Meltwater storage in the ice sheet occurs primarily due to storage in the high-accumulation regions of the southeast and northwest parts of Greenland. Analysis of seasonal variations in outlet glacier discharge shows that the contribution of ice discharge to the observed signal is minor (at the level of only a few gigatonnes) and does not explain the seasonal differences between the total mass and SMB signals. With the improved quantification of meltwater storage at the seasonal scale, we highlight its importance for understanding glacio-hydrological processes and their contributions to the ice sheet mass variability.


2016 ◽  
Vol 10 (5) ◽  
pp. 2361-2377 ◽  
Author(s):  
Brice Noël ◽  
Willem Jan van de Berg ◽  
Horst Machguth ◽  
Stef Lhermitte ◽  
Ian Howat ◽  
...  

Abstract. This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1847 ◽  
Author(s):  
Fang Zou ◽  
Robert Tenzer ◽  
Hok Fok ◽  
Janet Nichol

The Greenland Ice Sheet (GrIS) is losing mass at a rate that represents a major contribution to global sea-level rise in recent decades. In this study, we use the Gravity Recovery and Climate Experiment (GRACE) data to retrieve the time series variations of the GrIS from April 2002 to June 2017. We also estimate the mass balance from the RACMO2.3 and ice discharge data in order to obtain a comparative analysis and cross-validation. A detailed analysis of long-term trend and seasonal and inter-annual changes in the GrIS is implemented by GRACE and surface mass balance (SMB) modeling. The results indicate a decrease of −267.77 ± 8.68 Gt/yr of the GrIS over the 16-year period. There is a rapid decline from 2002 to 2008, which accelerated from 2009 to 2012 before declining relatively slowly from 2013 to 2017. The mass change inland is significantly smaller than that detected along coastal regions, especially in the southeastern, southwestern, and northwestern regions. The mass balance estimates from GRACE and SMB minus ice discharge (SMB-D) are very consistent. The ice discharge manifests itself mostly as a long-term trend, whereas seasonal mass variations are largely attributed to surface mass processes. The GrIS mass changes are mostly attributed to mass loss during summer. Summer mass changes are highly correlated with climate changes.


2015 ◽  
Vol 11 (3) ◽  
pp. 403-424 ◽  
Author(s):  
A. M. Dolan ◽  
S. J. Hunter ◽  
D. J. Hill ◽  
A. M. Haywood ◽  
S. J. Koenig ◽  
...  

Abstract. During an interval of the Late Pliocene, referred to here as the mid-Pliocene Warm Period (mPWP; 3.264 to 3.025 million years ago), global mean temperature was similar to that predicted for the end of this century, and atmospheric carbon dioxide concentrations were higher than pre-industrial levels. Sea level was also higher than today, implying a significant reduction in the extent of the ice sheets. Thus, the mPWP provides a natural laboratory in which to investigate the long-term response of the Earth's ice sheets and sea level in a warmer-than-present-day world. At present, our understanding of the Greenland ice sheet during the mPWP is generally based upon predictions using single climate and ice sheet models. Therefore, it is essential that the model dependency of these results is assessed. The Pliocene Model Intercomparison Project (PlioMIP) has brought together nine international modelling groups to simulate the warm climate of the Pliocene. Here we use the climatological fields derived from the results of the 15 PlioMIP climate models to force an offline ice sheet model. We show that mPWP ice sheet reconstructions are highly dependent upon the forcing climatology used, with Greenland reconstructions ranging from an ice-free state to a near-modern ice sheet. An analysis of the surface albedo variability between the climate models over Greenland offers insights into the drivers of inter-model differences. As we demonstrate that the climate model dependency of our results is high, we highlight the necessity of data-based constraints of ice extent in developing our understanding of the mPWP Greenland ice sheet.


Sign in / Sign up

Export Citation Format

Share Document