scholarly journals Modeling the response of Greenland outlet glaciers to global warming using a coupled flow line–plume model

2019 ◽  
Vol 13 (9) ◽  
pp. 2281-2301 ◽  
Author(s):  
Johanna Beckmann ◽  
Mahé Perrette ◽  
Sebastian Beyer ◽  
Reinhard Calov ◽  
Matteo Willeit ◽  
...  

Abstract. In recent decades, the Greenland Ice Sheet has experienced an accelerated mass loss, contributing to approximately 25 % of contemporary sea level rise (SLR). This mass loss is caused by increased surface melt over a large area of the ice sheet and by the thinning, retreat and acceleration of numerous Greenland outlet glaciers. The latter is likely connected to enhanced submarine melting that, in turn, can be explained by ocean warming and enhanced subglacial discharge. The mechanisms involved in submarine melting are not yet fully understood and are only simplistically incorporated in some models of the Greenland Ice Sheet. Here, we investigate the response of 12 representative Greenland outlet glaciers to atmospheric and oceanic warming using a coupled line–plume glacier–flow line model resolving one horizontal dimension. The model parameters have been tuned for individual outlet glaciers using present-day observational constraints. We then run the model from present to the year 2100, forcing the model with changes in surface mass balance and surface runoff from simulations with a regional climate model for the RCP8.5 scenario, and applying a linear ocean temperature warming with different rates of changes representing uncertainties in the CMIP5 model experiments for the same climate change scenario. We also use different initial temperature–salinity profiles obtained from direct measurements and from ocean reanalysis data. Using different combinations of submarine melting and calving parameters that reproduce the present-day state of the glaciers, we estimate uncertainties in the contribution to global SLR for individual glaciers. We also perform a sensitivity analysis of the three forcing factors (changes in surface mass balance, ocean temperature and subglacial discharge), which shows that the roles of the different forcing factors are diverse for individual glaciers. We find that changes in ocean temperature and subglacial discharge are of comparable importance for the cumulative contribution of all 12 glaciers to global SLR in the 21st century. The median range of the cumulative contribution to the global SLR for all 12 glaciers is about 18 mm (the glaciers' dynamic response to changes of all three forcing factors). Neglecting changes in ocean temperature and subglacial discharge (which control submarine melt) and investigating the response to changes in surface mass balance only leads to a cumulative contribution of 5 mm SLR. Thus, from the 18 mm we associate roughly 70 % with the glaciers' dynamic response to increased subglacial discharge and ocean temperature and the remaining 30 % (5 mm) to the response to increased surface mass loss. We also find a strong correlation (correlation coefficient 0.74) between present-day grounding line discharge and their future contribution to SLR in 2100. If the contribution of the 12 glaciers is scaled up to the total present-day discharge of Greenland, we estimate the midrange contribution of all Greenland glaciers to 21st-century SLR to be approximately 50 mm. This number adds to SLR derived from a stand-alone ice sheet model (880 mm) that does not resolve outlet glaciers and thus increases SLR by over 50 %. This result confirms earlier studies showing that the response of the outlet glaciers to global warming has to be taken into account to correctly assess the total contribution of Greenland to sea level change.

2018 ◽  
Vol 9 (4) ◽  
pp. 1169-1189 ◽  
Author(s):  
Martin Rückamp ◽  
Ulrike Falk ◽  
Katja Frieler ◽  
Stefan Lange ◽  
Angelika Humbert

Abstract. Sea-level rise associated with changing climate is expected to pose a major challenge for societies. Based on the efforts of COP21 to limit global warming to 2.0 ∘C or even 1.5 ∘C by the end of the 21st century (Paris Agreement), we simulate the future contribution of the Greenland ice sheet (GrIS) to sea-level change under the low emission Representative Concentration Pathway (RCP) 2.6 scenario. The Ice Sheet System Model (ISSM) with higher-order approximation is used and initialized with a hybrid approach of spin-up and data assimilation. For three general circulation models (GCMs: HadGEM2-ES, IPSL-CM5A-LR, MIROC5) the projections are conducted up to 2300 with forcing fields for surface mass balance (SMB) and ice surface temperature (Ts) computed by the surface energy balance model of intermediate complexity (SEMIC). The projected sea-level rise ranges between 21–38 mm by 2100 and 36–85 mm by 2300. According to the three GCMs used, global warming will exceed 1.5 ∘C early in the 21st century. The RCP2.6 peak and decline scenario is therefore manually adjusted in another set of experiments to suppress the 1.5 ∘C overshooting effect. These scenarios show a sea-level contribution that is on average about 38 % and 31 % less by 2100 and 2300, respectively. For some experiments, the rate of mass loss in the 23rd century does not exclude a stable ice sheet in the future. This is due to a spatially integrated SMB that remains positive and reaches values similar to the present day in the latter half of the simulation period. Although the mean SMB is reduced in the warmer climate, a future steady-state ice sheet with lower surface elevation and hence volume might be possible. Our results indicate that uncertainties in the projections stem from the underlying GCM climate data used to calculate the surface mass balance. However, the RCP2.6 scenario will lead to significant changes in the GrIS, including elevation changes of up to 100 m. The sea-level contribution estimated in this study may serve as a lower bound for the RCP2.6 scenario, as the currently observed sea-level rise is not reached in any of the experiments; this is attributed to processes (e.g. ocean forcing) not yet represented by the model, but proven to play a major role in GrIS mass loss.


2018 ◽  
Author(s):  
Johanna Beckmann ◽  
Mahé Perrette ◽  
Sebastian Beyer ◽  
Reinhard Calov ◽  
Matteo Willeit ◽  
...  

Abstract. In recent decades, the Greenland Ice Sheet has experienced an accelerated mass loss, contributing to approximately 25 % of contemporary sea level rise. This mass loss is caused by increased surface melt over a large area of the ice sheet and by the thinning, retreat and acceleration of numerous Greenland outlet glaciers. The latter is likely connected to enhanced submarine melting that, in turn, can be explained by ocean warming and enhanced subglacial discharge. The mechanisms involved in submarine melting are not yet fully understood and are only crudely incorporated in some models of the Greenland Ice Sheet. Here, we investigate the response of twelve representative Greenland outlet glaciers to atmospheric and oceanic warming using a coupled 1D line-plume glacier-flowline model. The model parameters have been tuned for individual outlet glaciers using present-day observational constraints. We then run the model from present to the year 2100, forcing the model with changes in surface mass balance and surface runoff from simulations with a regional climate model for the RCP 8.5 scenario, and applying a linear ocean temperature warming with different rates of changes representing uncertainties in the CMIP 5 model experiments for the same climate change scenario. We also used different initial temperature-salinity profiles obtained from direct measurements and from ocean reanalysis data. Using different combinations of submarine melting and calving parameters that reproduce the present-day state of the glaciers, we estimated uncertainties in the contribution to global sea level rise for individual glaciers. We also performed a factor analysis, which shows that the role of different forcing (change in surface mass balance, ocean temperature and subglacial discharge) are diverse for individual glaciers. We found that changes in, ocean temperature and subglacial discharge are of comparable importance for the cumulative contribution of all twelve glaciers to global sea level rise in the 21st century. The median range of the cumulative contribution to the global sea level rise for all twelve glaciers is about 14 mm from which roughly 85 % are associated with the response to increased submarine melting and the remaining part to surface mass loss. We also found a weak correlation (correlation coefficient 0.35) between present-day grounding line discharge and their future contribution to sea level rise in 2100. If the contribution of the twelve glaciers is scaled up to the total present-day discharge of Greenland, we estimate the contribution of all Greenland glaciers to 21st-century sea level rise to be approximately 50 mm. This result confirms earlier studies that the response of the outlet glaciers to global warming has to be taken into account to correctly assess the total contribution of Greenland to sea level change.


2018 ◽  
Author(s):  
Linsong Wang ◽  
Liangjing Zhang ◽  
Chao Chen ◽  
Maik Thomas ◽  
Mikhail K. Kaban

Abstract. The sea level rise contributed from ice sheet melting has been accelerating due to global warming. Continuous melting of the Greenland ice sheet (GrIS) is a major contributor to sea level rise, which impacts directly on the surface mass balance and the instantaneous elastic response of the solid Earth. To study the sea level fingerprints (SLF) caused by the anomalous acceleration of the mass loss in GrIS can help us to understand drivers of sea level changes due to global warming and the frequently abnormal climate events. In this study, we focus on the anomalous acceleration of the mass loss in GrIS at the drainage basins from 2010 to 2012 and on its contributions to SLF and relative sea level (RSL) changes based on self-attraction and loading effects. Using GRACE monthly gravity fields and surface mass balance (SMB) data spanning 13 years between 2003 and 2015, the spatial and temporal distribution of the ice sheet balance in Greenland is estimated by mascons fitting based on six extended drainage basins and matrix scaling factors. Then the SLF spatial variations are computed by solving the sea level equation. Our results indicate that the total ice sheet mass loss is contributed from few regions only in Greenland, i.e., from the northwest, central west, southwestern and southeastern parts. Especially along the north-west coast and the south-east coast, ice was melting significantly during 2010–2012. The total mass loss rates during 2003–2015 are −288±7 Gt/yr and −275±1 Gt/yr as derived from scaled GRACE data and SMB respectively; and the magnitude of the trend increased to −456±30 Gt/yr and to −464±38 Gt/yr correspondingly over the period 2010–2012. The residuals obtained by GRACE after removing SMB show a good agreement with the surface elevation change rates derived from pervious ICESat results, which reflect a contribution from glacial dynamics to the total ice mass changes. Melting of GrIS results in decreased RSL in Scandinavia and North Europe, up to about −0.6 cm/yr. The far-field peak increase is less dependent on the precise pattern of self-attraction and loading; and the average global RSL was raised by 0.07 cm/yr only. Greenland contributes about 31 % of the total terrestrial water storage transferring to the sea level rise from 2003 to 2015. We also found that variations of the GrIS contribution to sea level have an opposite V shape (i.e., from rising to falling) during 2010–2012, while a clear global mean sea level drop also took place (i.e., from falling to rising).


2018 ◽  
Vol 12 (10) ◽  
pp. 3097-3121 ◽  
Author(s):  
Reinhard Calov ◽  
Sebastian Beyer ◽  
Ralf Greve ◽  
Johanna Beckmann ◽  
Matteo Willeit ◽  
...  

Abstract. We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961–1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation–surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation–surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.


2016 ◽  
Vol 10 (5) ◽  
pp. 1933-1946 ◽  
Author(s):  
Michiel R. van den Broeke ◽  
Ellyn M. Enderlin ◽  
Ian M. Howat ◽  
Peter Kuipers Munneke ◽  
Brice P. Y. Noël ◽  
...  

Abstract. We assess the recent contribution of the Greenland ice sheet (GrIS) to sea level change. We use the mass budget method, which quantifies ice sheet mass balance (MB) as the difference between surface mass balance (SMB) and solid ice discharge across the grounding line (D). A comparison with independent gravity change observations from GRACE shows good agreement for the overlapping period 2002–2015, giving confidence in the partitioning of recent GrIS mass changes. The estimated 1995 value of D and the 1958–1995 average value of SMB are similar at 411 and 418 Gt yr−1, respectively, suggesting that ice flow in the mid-1990s was well adjusted to the average annual mass input, reminiscent of an ice sheet in approximate balance. Starting in the early to mid-1990s, SMB decreased while D increased, leading to quasi-persistent negative MB. About 60 % of the associated mass loss since 1991 is caused by changes in SMB and the remainder by D. The decrease in SMB is fully driven by an increase in surface melt and subsequent meltwater runoff, which is slightly compensated by a small ( <  3 %) increase in snowfall. The excess runoff originates from low-lying ( <  2000 m a.s.l.) parts of the ice sheet; higher up, increased refreezing prevents runoff of meltwater from occurring, at the expense of increased firn temperatures and depleted pore space. With a 1991–2015 average annual mass loss of  ∼  0.47 ± 0.23 mm sea level equivalent (SLE) and a peak contribution of 1.2 mm SLE in 2012, the GrIS has recently become a major source of global mean sea level rise.


2019 ◽  
Author(s):  
Heiko Goelzer ◽  
Brice P. Y. Noel ◽  
Tamsin L. Edwards ◽  
Xavier Fettweis ◽  
Jonathan M. Gregory ◽  
...  

2010 ◽  
Vol 11 (1) ◽  
pp. 3-25 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston ◽  
Christopher A. Hiemstra ◽  
Jens H. Christensen

Abstract Fluctuations in the Greenland ice sheet (GrIS) surface mass balance (SMB) and freshwater influx to the surrounding oceans closely follow climate fluctuations and are of considerable importance to the global eustatic sea level rise. A state-of-the-art snow-evolution modeling system (SnowModel) was used to simulate variations in the GrIS melt extent, surface water balance components, changes in SMB, and freshwater influx to the ocean. The simulations are based on the Intergovernmental Panel on Climate Change scenario A1B modeled by the HIRHAM4 regional climate model (RCM) using boundary conditions from the ECHAM5 atmosphere–ocean general circulation model (AOGCM) from 1950 through 2080. In situ meteorological station [Greenland Climate Network (GC-Net) and World Meteorological Organization (WMO) Danish Meteorological Institute (DMI)] observations from inside and outside the GrIS were used to validate and correct RCM output data before they were used as input for SnowModel. Satellite observations and independent SMB studies were used to validate the SnowModel output and confirm the model’s robustness. The authors simulated an ∼90% increase in end-of-summer surface melt extent (0.483 × 106 km2) from 1950 to 2080 and a melt index (above 2000-m elevation) increase of 138% (1.96 × 106 km2 × days). The greatest difference in melt extent occurred in the southern part of the GrIS, and the greatest changes in the number of melt days were seen in the eastern part of the GrIS (∼50%–70%) and were lowest in the west (∼20%–30%). The rate of SMB loss, largely tied to changes in ablation processes, leads to an enhanced average loss of 331 km3 from 1950 to 2080 and an average SMB level of −99 km3 for the period 2070–80. GrIS surface freshwater runoff yielded a eustatic rise in sea level from 0.8 ± 0.1 (1950–59) to 1.9 ± 0.1 mm (2070–80) sea level equivalent (SLE) yr−1. The accumulated GrIS freshwater runoff contribution from surface melting equaled 160-mm SLE from 1950 through 2080.


2012 ◽  
Vol 6 (6) ◽  
pp. 1275-1294 ◽  
Author(s):  
J. G. L. Rae ◽  
G. Aðalgeirsdóttir ◽  
T. L. Edwards ◽  
X. Fettweis ◽  
J. M. Gregory ◽  
...  

Abstract. Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs). This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2), with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated.


2018 ◽  
Author(s):  
Reinhard Calov ◽  
Sebastian Beyer ◽  
Ralf Greve ◽  
Johanna Beckmann ◽  
Matteo Willeit ◽  
...  

Abstract. We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. Aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961-1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation-surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute to global sea level rise between 1.9 and 13.0 cm until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation-surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking Helheim and Store Glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.


Sign in / Sign up

Export Citation Format

Share Document