scholarly journals Seasonal evolution of basal environment conditions of Russell sector, West Greenland, inverted from satellite observation of surface flow

2021 ◽  
Vol 15 (12) ◽  
pp. 5675-5704
Author(s):  
Anna Derkacheva ◽  
Fabien Gillet-Chaulet ◽  
Jeremie Mouginot ◽  
Eliot Jager ◽  
Nathan Maier ◽  
...  

Abstract. Due to increasing surface melting on the Greenland ice sheet, better constraints on seasonally evolving basal water pressure and sliding speed are required by models. Here we assess the potential of using inverse methods on a dense time series of surface speeds to recover the seasonal evolution of the basal conditions in a well-documented region in southwest Greenland. Using data compiled from multiple satellite missions, we document seasonally evolving surface velocities with a temporal resolution of 2 weeks between 2015 and 2019. We then apply the inverse control method using the ice flow model Elmer/Ice to infer the basal sliding and friction corresponding to each of the 24 surface velocity data sets. Near the margin where the uncertainty in the velocity and bed topography are small, we obtain clear seasonal variations that can be mostly interpreted in terms of an effective-pressure-based hard-bed friction law. We find for valley bottoms or “troughs” in the bed topography that the changes in modelled basal conditions directly respond to local modelled water pressure variations, while the link is more complex for subglacial “ridges” which are often non-locally forced. At the catchment scale, in-phase variations in the water pressure, surface velocities, and surface runoff variations are found. Our results show that time series inversions of observed surface velocities can be used to understand the evolution of basal conditions over different timescales and could therefore serve as an intermediate validation for subglacial hydrology models to achieve better coupling with ice flow models.

2021 ◽  
Author(s):  
Anna Derkacheva ◽  
Fabien Gillet-Chaulet ◽  
Jeremie Mouginot ◽  
Eliot Jager ◽  
Nathan Maier ◽  
...  

Abstract. Increasing surface melting on the Greenland ice sheet requires better constraints on seasonally evolving basal water pressure and sliding speed. Here we assess the potential of using inverse methods on a dense time series of surface speeds to recover the seasonal evolution of the basal conditions in a well-documented region in southwest Greenland. Using data compiled from multiple satellite missions, we document seasonally evolving surface velocities with a temporal resolution of two weeks. We then apply the inverse control method using Elmer/Ice to infer the basal sliding and friction corresponding to each of the 24 surface-velocity data sets. Near the margin where the uncertainty in the velocity and bed topography are small, we obtain clear seasonal variations that can be mostly interpreted in terms of a effective-pressure based hard-bed friction law. We find for valley bottoms or "troughs" in the bed topography, the changes in basal conditions directly respond to local water pressure variations, while the link is more complex for subglacial "ridges" which are often non-locally forced. At the catchment scale, in-phase variations of the water pressure, surface velocities, surface-runoff variations are found.Our results show that time-series inversions of observed surface velocities can be used to understand the evolution of basal conditions over different timescales and could therefore serve as an intermediate validation for subglacial hydrology models to achieve better coupling with ice-flow models.


2020 ◽  
Author(s):  
Lizz Ultee ◽  
Bryan Riel ◽  
Brent Minchew

<p>The rate of ice flux from the Greenland Ice Sheet to the ocean depends on the ice flow velocity through outlet glaciers. Ice flow velocity, in turn, evolves in response to multiple geographic and environmental forcings at different timescales. For example, velocity may vary daily in response to ocean tides, seasonally in response to surface air temperature, and multi-annually in response to long-term trends in climate. The satellite observations processed as part of the NASA MEaSUREs Greenland Ice Sheet Velocity Map allow us to analyse variations in ice surface velocity at multiple timescales. Here, we decompose short-term and long-term signals in time-dependent velocity fields for Greenland outlet glaciers based on the methods of Riel et al. (2018). Patterns found in short-term signals can constrain basal sliding relations and ice rheology, while the longer-term signals hint at decadal in/stability of outlet glaciers. We present example velocity time series for outlets including Sermeq Kujalleq (Jakobshavn Isbrae) and Helheim Glacier, and we highlight features indicative of dynamic drawdown or advective restabilization. Finally, we comment on the capabilities of a time series analysis software under development for glaciological applications.</p>


2013 ◽  
Vol 7 (2) ◽  
pp. 1101-1118 ◽  
Author(s):  
I. Joughin ◽  
S. B. Das ◽  
G. E. Flowers ◽  
M. D. Behn ◽  
R. B. Alley ◽  
...  

Abstract. Supraglacial lakes play an important role in establishing hydrological connections that allow lubricating seasonal melt water to reach the base of the Greenland Ice Sheet. Here we use new surface velocity observations to examine the influence of supraglacial lake drainages and surface melt rate on ice flow. We find large, spatially extensive speedups concurrent with times of lake drainage, showing that lakes play a key role in modulating regional ice flow. While surface meltwater is supplied to the bed via a geographically sparse network of moulins, the observed ice-flow enhancement suggests that this meltwater spreads widely over the ice-sheet bed. We also find that the complex spatial pattern of speedup is strongly determined by the combined influence of bed and surface topography on subglacial water flow. Thus, modeling of ice-sheet basal hydrology likely will require knowledge of bed topography resolved at scales (sub-kilometer) far finer than existing data (several km).


2013 ◽  
Vol 7 (4) ◽  
pp. 1185-1192 ◽  
Author(s):  
I. Joughin ◽  
S. B. Das ◽  
G. E. Flowers ◽  
M. D. Behn ◽  
R. B. Alley ◽  
...  

Abstract. Supraglacial lakes play an important role in establishing hydrological connections that allow lubricating seasonal meltwater to reach the base of the Greenland Ice Sheet. Here we use new surface velocity observations to examine the influence of supraglacial lake drainages and surface melt rate on ice flow. We find large, spatially extensive speedups concurrent with times of lake drainage, showing that lakes play a key role in modulating regional ice flow. While surface meltwater is supplied to the bed via a geographically sparse network of moulins, the observed ice-flow enhancement suggests that this meltwater spreads widely over the ice-sheet bed. We also find that the complex spatial pattern of speedup is strongly determined by the combined influence of bed and surface topography on subglacial water flow. Thus, modeling of ice-sheet basal hydrology likely will require knowledge of bed topography resolved at scales (sub-kilometer) far finer than existing data (several km).


2020 ◽  
Vol 61 (81) ◽  
pp. 143-153 ◽  
Author(s):  
Steven Franke ◽  
Daniela Jansen ◽  
Tobias Binder ◽  
Nils Dörr ◽  
Veit Helm ◽  
...  

AbstractThe Northeast Greenland Ice Stream (NEGIS) is an important dynamic component for the total mass balance of the Greenland ice sheet, as it reaches up to the central divide and drains 12% of the ice sheet. The geometric boundary conditions and in particular the nature of the subglacial bed of the NEGIS are essential to understand its ice flow dynamics. We present a record of more than 8000 km of radar survey lines of multi-channel, ultra-wideband radio echo sounding data covering an area of 24 000 km2, centered on the drill site for the East Greenland Ice-core Project (EGRIP), in the upper part of the NEGIS catchment. Our data yield a new detailed model of ice-thickness distribution and basal topography in the region. The enhanced resolution of our bed topography model shows features which we interpret to be caused by erosional activity, potentially over several glacial–interglacial cycles. Off-nadir reflections from the ice–bed interface in the center of the ice stream indicate a streamlined bed with elongated subglacial landforms. Our new bed topography model will help to improve the basal boundary conditions of NEGIS prescribed for ice flow models and thus foster an improved understanding of the ice-dynamic setting.


1978 ◽  
Vol 20 (84) ◽  
pp. 469-508 ◽  
Author(s):  
H. F. Engelhardt ◽  
W. D. Harrison ◽  
Barclay Kamb

AbstractBore-hole photography demonstrates that the glacier bed was reached by cable-tool drilling in five bore holes in Blue Glacier, Washington. Basal sliding velocities measured by bore-hole photography, and confirmed by inclinometry, range from 0.3 to 3.0 cm/d and average 1.0 cm/d, much less than half the surface velocity of 15 cm/d. Sliding directions deviate up to 30° from the surface flow direction. Marked lateral and time variations in sliding velocity occur. The glacier bed consists of bedrock overlain by a ≈ 10 cm layer ofactive subsole drift, which intervenes between bedrock and ice sole and is actively involved in the sliding process. It forms a mechanically and visibly distinct layer, partially to completely ice-free, beneath the zone of debris-laden ice at the base of the glacier. Internal motions in the subsole drift include rolling of clasts caught between bedrock and moving ice. The largest sliding velocities occur in places where a basal gap, of width up to a few centimeters, intervenes between ice sole and subsole drift. The gap may result from ice—bed separation due to pressurization of the bed by bore-hole water. Water levels in bore holes reaching the bed drop to the bottom when good hydraulic connection is established with sub-glacial conduits; the water pressure in the conduits is essentially atmospheric. Factors responsible for the generally low sliding velocities are high bed roughness due to subsole drift, partial support of basal shear stress by rock friction, and minimal basal cavitation because of low water pressure in subglacial conduits. The observed basal conditions do not closely correspond to those assumed in existing theories of sliding.


2021 ◽  
Author(s):  
Anna Derkacheva ◽  
Fabien Gillet-Chaulet ◽  
Jeremie Mouginot

<p>Greenland’s future response to climate change will be determined partly by various phenomena controlling ice flow. For the land-terminating sectors, the water lubricating the glacier's base is considered as a major control on the ice motion. For instance, the seasonal modulations of water input induced by summer melt can cause glacier speed-up up to +200-300% compared to the winter mean. Thus, a comprehensive understanding of variations in the basal conditions, which are at the origin of the glacier flow fluctuations, plays a key role for the climate projections.</p><p>While the in-situ measurements stay a local and hard approach to investigate the basal conditions, ice flow modeling offers the possibility to invert for them over the large area based on observations of surface glacier speed and topography. During the last decade, the number of available satellite observations has increased significantly, allowing for far more frequent measurements of the glacier speed and precise reconstruction of the seasonal fluctuations. Here, we investigate the possibility of applying this satellite-derived time-series of surface ice velocity to reconstruct the annual behavior of the basal conditions with 2 weeks temporal resolution using an ice flow model.</p><p>The area of this study is Russell glacier located on the southwest coast of Greenland. A time series of surface velocity dataset was created by merging measurements from Sentinel-1&2 and Landsat-8, covering an area up to 100 km inland with 150 m/pix spatial resolution and 2-weeks temporal resolution (Derkacheva et al. 2020). The 3D Full-Stokes ice flow model Elmer/Ice is used to invert for the effective basal friction coefficient for each time step.  Usage of a friction law that has been derived for hard beds (Gagliardini et al., 2007) allows to constrain the variation of the basal effective pressure. Overall, the results from the model inversions give access to the evolution of the basal ice speed, friction, effective and water pressure, floatation fraction throughout a complete year. The results are compared with in-situ measurements in terms of absolute values and show a good agreement. The impact of the flow model setup, regularization, assumptions for the ice rheology, and the impact of noise in the speed data are also examined and compared with in-situ measurements.</p>


1995 ◽  
Vol 41 (137) ◽  
pp. 161-173 ◽  
Author(s):  
James L. Fastook ◽  
Henry H. Brecher ◽  
Terence J. Hughes

AbstractJakobshavns Isbræ (69 °10′ N, 49 °59′ W) drains about 6.5% of the Greenland ice sheet and is the fastest ice stream known. The Jakobshavns Isbræ basin of about 10 000 km2was mapped photogrammetrically from four sets of aerial photography, two taken in July 1985 and two in July 1986. Positions and elevations of several hundred natural features on the ice surface were determined for each epoch by photogrammetric block aerial triangulation, and surface velocity vectors were computed from the positions. The two flights in 1985 yielded the best results and provided most common points (716) for velocity determinations and are therefore used in the modeling studies. The data from these irregularly spaced points were used to calculate ice elevations and velocity vectors at uniformly spaced grid points 3 km apart by interpolation. The field of surface strain rates was then calculated from these gridded data and used to compute the field of surface deviatoric stresses, using the flow law of ice, for rectilinear coordinates,X, Ypointing eastward and northward, and curvilinear coordinates.L, Τpointing longitudinally and transversely to the changing ice-flow direction, Ice-surface elevations and slopes were then used to calculate ice thicknesses and the fraction of the ice velocity due to basal sliding. Our calculated ice thicknesses are in fair agreement with an ice-thickness map based on seismic sounding and supplied to us by K. Echelmeyer. Ice thicknesses were subtracted from measured ice-surface elevations to map bed topography. Our calculation shows that basal sliding is significant only in the 10–15 km before Jakobshavns Isbræ becomes afloat in Jakobshavns Isfjord.


2014 ◽  
Vol 60 (222) ◽  
pp. 647-660 ◽  
Author(s):  
Claudia Ryser ◽  
Martin P. Lüthi ◽  
Lauren C. Andrews ◽  
Matthew J. Hoffman ◽  
Ginny A. Catania ◽  
...  

AbstractIce deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44–73% in winter, and up to 90% in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models.


2020 ◽  
Author(s):  
Samuel Cook ◽  
Poul Christoffersen ◽  
Joe Todd ◽  
Donald Slater ◽  
Nolwenn Chauché ◽  
...  

<p>Tidewater glaciers are complex systems, which present numerous modelling challenges with regards to integrating a multitude of environmental processes spanning different timescales. At the same time, an accurate representation of these systems in models is critical to being able to effectively predict the evolution of the Greenland Ice Sheet and the resulting sea-level rise. In this study, we present results from numerical simulations of Store Glacier in West Greenland that couple ice flow modelled by Elmer/Ice with subglacial hydrology modelled by GlaDS and submarine melting represented with a simple plume model forced by hydrographic observations. The simulations capture the seasonal evolution of the subglacial drainage system and the glacier’s response, and also include the influence of plume-induced ice front melting on calving and buttressing from ice melange present in winter and spring.</p><p>Through running the model for a 6-year period from 2012 to 2017, covering both high- and low-melt years, we find inputs of surface meltwater to the subglacial system establishes channelised subglacial drainage with channels >1 m<sup>2</sup> extending 30-60 km inland depending on the amount of supraglacial runoff evacuated subglacially. The growth of channels is, however, not sufficiently fast to accommodate all inputs of meltwater from the surface, which means that basal water pressures are generally higher in warmer summers compared to cooler summers and lowest in winter months. As a result, the simulated flow of Store Glacier is such that velocities peak in warmer summers, though we suggest that higher surface melt levels may lead to sufficient channelisation for a widespread low-water-pressure system to evolve, which would reduce summer velocities. The results indicate that Greenland’s contribution to sea-level rise is sensitive to the evolution of the subglacial drainage system and especially the ability of channels to grow and accommodate surface meltwater effectively. We also posit that the pattern of plume melting encourages further calving by creating an indented calving front with ‘headlands’ that are laterally unsupported and therefore more vulnerable to collapse. We validate our simulations with a three-week record of iceberg calving events gathered using a terrestrial radar interferometer installed near the calving terminus of Store Glacier.</p>


Sign in / Sign up

Export Citation Format

Share Document