scholarly journals The shape of occupancy distributions in plant communities: the importance of artefactual effects

Web Ecology ◽  
2009 ◽  
Vol 9 (1) ◽  
pp. 8-23 ◽  
Author(s):  
P. M. Kammer ◽  
C. M. Vonlanthen

Abstract. Occupancy frequency distributions are commonly used as an approach to describe and analyse interspecific distribution patterns. However, the relative importance of biological versus artefactual mechanisms in shaping occupancy distributions is still largely undetermined. We evaluated the importance of different and interacting artefactual effects on the shape of occupancy distributions in local plant communities. The effects of sampling protocol parameters (i.e. size and number of sample units, sample extent, coverage, and intensity) on the shape of the occupancy distributions were examined separately. We identified the mechanisms that cause the effects by tracking the shifts of individual species between occupancy classes with varying parameters. Furthermore, the impact of different species abundance distributions and increasing levels of intraspecific aggregation on occupancy distributions was investigated by means of artificial assemblages. We show the following results: 1) increases in the number of sample units, sample extent, coverage, and intensity all result in a unimodal occupancy distribution with the mode in the lowest occupancy class; 2) an increase in sample unit size leads to a bimodal distribution; 3) changes that occur in the shape of the occupancy distributions with varying sampling protocol parameters can be explained by the movements of the species between occupancy classes; 4) different species abundance distributions may cause occupancy distributions with a left-hand mode or a bimodal distribution; and 5) the number of species in the highest occupancy class decreases with increasing degree of aggregation. The mode that almost always occurs in the lowest occupancy class is most likely due to the high number of rare species existing in most communities; the mode in the highest class emerges as a pure artefact that occurs when the sample unit size is relatively large compared to the sample extent. Consequently, the exclusion or separation of concurrent artefactual mechanisms is crucial when investigating the biological causes for the shape of occupancy distributions.

2021 ◽  
Author(s):  
◽  
Danilo Coelho de Almeida

<p>The present study is divided into two parts: Firstly, null models where used to test whether plant communities in a New Zealand forest were assembled deterministically or stochastically. Secondly, a relationship between a plant trait; Leaf Mass per Area (LMA) and environmental conditions was investigated in a New Zealand forest. For the first study abundance of adult species was recorded in thirty 30m x 30m plots at Otari Wilton's Bush. In a subsample of six plots, the abundance of seedling species was also recorded. Null models for species co-occurrence, species richness, species abundance and niche overlap were used in order to establish how plant communities assemble at Otari Wilton's Bush. There was evidence of both determinist and stochasticity in some aspects of the plant community, it appears that seedlings are mainly randomly assembled whereas, determinism appears to be the main driver of community composition for mature trees. Results therefore suggest a pluralistic approach should be used in order to explain plant community patterns at Otari Wilton's Bush. For the second study, of all species observed in the first study only those species found in five or more of the plots were examined. For those species, the height of the two highest individuals was measured. From each individual, six fully exposed leaves were collected and measured. Measurements of environmental conditions were also collected for all plots. Principal component analysis and multiple regression was used to analyse the data. Height related (vertical) trends were observed for three surveyed species such that LMA significantly increased with plant height. Horizontal patterns were observed for two species, and for three species it was not possible to distinguish the association of tree height (vertical) and position along the forest (horizontal) with LMA. Potentially, by including more species in future studies a clearer pattern will be observed. It could also be that different species display different strategies regarding LMA and if so, a study more focused on individual species in isolation may be able to provide more informative explanations.</p>


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5928
Author(s):  
Qiang Su

Since the 1970s, species abundance distributions (SADs) have been one of the most fundamental issues in ecology and have frequently been investigated and reviewed. However, there was surprisingly little consensus. This study focuses on three essential questions. (1) Is there a general pattern of SAD that no community can violate it? (2) If it exists, what does it look like? (3) Why is it like this? The frequency distributions of 19,833 SADs from eight datasets (including eleven taxonomic groups from terrestrial, aquatic, and marine ecosystems) suggest that a general pattern of SAD might exist. According to two hypotheses (the finiteness of the total energy and the causality from the entropy to the diversity), this study assumes that the general pattern of SAD is approximately consistent with Zipf’s law, which means that Zipf’s law might be more easily to observe when one investigates any SAD. In the future, this conjecture not only needs to be tested (or supported) by more and more datasets, but also depends on how well it is explained from different angles of theories.


2021 ◽  
Author(s):  
◽  
Danilo Coelho de Almeida

<p>The present study is divided into two parts: Firstly, null models where used to test whether plant communities in a New Zealand forest were assembled deterministically or stochastically. Secondly, a relationship between a plant trait; Leaf Mass per Area (LMA) and environmental conditions was investigated in a New Zealand forest. For the first study abundance of adult species was recorded in thirty 30m x 30m plots at Otari Wilton's Bush. In a subsample of six plots, the abundance of seedling species was also recorded. Null models for species co-occurrence, species richness, species abundance and niche overlap were used in order to establish how plant communities assemble at Otari Wilton's Bush. There was evidence of both determinist and stochasticity in some aspects of the plant community, it appears that seedlings are mainly randomly assembled whereas, determinism appears to be the main driver of community composition for mature trees. Results therefore suggest a pluralistic approach should be used in order to explain plant community patterns at Otari Wilton's Bush. For the second study, of all species observed in the first study only those species found in five or more of the plots were examined. For those species, the height of the two highest individuals was measured. From each individual, six fully exposed leaves were collected and measured. Measurements of environmental conditions were also collected for all plots. Principal component analysis and multiple regression was used to analyse the data. Height related (vertical) trends were observed for three surveyed species such that LMA significantly increased with plant height. Horizontal patterns were observed for two species, and for three species it was not possible to distinguish the association of tree height (vertical) and position along the forest (horizontal) with LMA. Potentially, by including more species in future studies a clearer pattern will be observed. It could also be that different species display different strategies regarding LMA and if so, a study more focused on individual species in isolation may be able to provide more informative explanations.</p>


2020 ◽  
Author(s):  
Juan A. Balbuena ◽  
Clara Montlleó ◽  
Cristina Llopis-Belenguer ◽  
Isabel Blasco-Costa ◽  
Volodimir L. Sarabeev ◽  
...  

Abstract1. Most species in ecological communities are rare whereas only a few are common. This distributional paradox has intrigued ecologists for decades but the interpretation of species abundance distributions remains elusive.2. We present Fuzzy Quantification of Common and Rare Species in Ecological Communities (FuzzyQ) as an R package. FuzzyQ shifts the focus from the prevailing species-categorization approach to develop a quantitative framework that seeks to place each species along a rare-commonness gradient. Given a community surveyed over a number of sites, quadrats, or any other convenient sampling unit, FuzzyQ uses a fuzzy clustering algorithm that estimates a probability for each species to be common or rare based on abundance-occupancy information. Such as probability can be interpreted as a commonness index ranging from 0 to 1. FuzzyQ also provides community-level metrics about the coherence of the allocation of species into the common and rare clusters that are informative of the nature of the community under study.3. The functionality of FuzzyQ is shown with two real datasets. We demonstrate how FuzzyQ can effectively be used to monitor and model spatio-temporal changes in species commonness, and assess the impact of species introductions on ecological communities. We also show that the approach works satisfactorily with a wide range of communities varying in species richness, dispersion and abundance currencies.4. FuzzyQ produces ecological indicators easy to measure and interpret that can give both clear, actionable insights into the nature of ecological communities and provides a powerful way to monitor environmental change on ecosystems. Comparison among communities is greatly facilitated by the fact that the method is relatively independent of the number of sites or sampling units considered. Thus, we consider FuzzyQ as a potentially valuable analytical tool in community ecology and conservation biology.


2018 ◽  
Author(s):  
David García-Callejas

AbstractSpecies Abundance Distributions (SADs) are one of the most studied properties of ecological communities, and their variability has been studied mostly in the context of horizontal communities, i.e. sets of species from a particular trophic guild. However, virtually all ecological communities encompass several trophic guilds, and the trophic interactions between them are key for explaining the persistence and abundance of individual species. Here I ask whether trophic interactions are also important in shaping Species Abundance Distributions of the different guilds of a community. I analyze the variation in SAD shape across trophic guilds in model and empirical communities. For that, I use a theoretical model that allows tracking the variations in abundances across trophic levels. The relationship between SAD shape and (1) trophic level, and (2) degree of predator specialization is analyzed using mixed-effect models. I combine this approach with an analysis of 4676 empirical datasets spanning terrestrial, marine and freshwater habitats, for which the variation in SAD shape is related to (1) trophic guild, and (2) habitat type. The evenness of model SADs is positively correlated to the trophic level of the guild considered, and also to the number of prey species per predator. These findings are confirmed by the empirical data: there is a significant relationship between SAD evenness and trophic guild, whereby primary producers display the most uneven SADs and pure carnivores the most even ones. Furthermore, regardless of trophic guild, SADs from marine habitats are the most even ones, with terrestrial SADs being the most uneven.


2021 ◽  
Vol 13 (11) ◽  
pp. 2026
Author(s):  
Candela Casanovas ◽  
Paola Salio ◽  
Victoria Galligani ◽  
Brenda Dolan ◽  
Stephen W. Nesbitt

The Remote sensing of Electrification, Lightning, And Meso-scale/micro-scale Processes with Adaptive Ground Observations (RELAMPAGO) and the Cloud, Aerosol, and Complex Terrain Interactions Experiment Proposal (CACTI) field campaigns provided an unprecedented thirteen-disdrometer dataset in Central Argentina during the Intensive (IOP, 15 November to 15 December 2018) and Extended (EOP, 15 October 2018 to 30 April 2019) Observational Periods. The drop size distribution (DSD) parameters and their variability were analyzed across the region of interest, which was divided into three subregions characterized by the differing proximity to the Sierras de Córdoba (SDC), in order to assess the impact of complex terrain on the DSD parameters. A rigorous quality control of the data was first performed. The frequency distributions of DSD-derived parameters were analyzed, including the normalized intercept parameter (logNw), the mean volume diameter (D0), the mean mass diameter (Dm), the shape parameter (μ), the liquid water content (LWC), and the rain rate (R). The region closest to the SDC presented higher values of logNw, lower D0, and higher μ, while the opposite occurred in the farthest region, i.e., the concentration of small drops decreased while the concentration of bigger drops increased with the distance to the east of the SDC. Furthermore, the region closest to the SDC showed a bimodal distribution of D0: the lower values of D0 were associated with higher values of logNw and were found more frequently during the afternoon, while the higher D0 were associated with lower logNw and occurred more frequently during the night. The data were analyzed in comparison to the statistical analysis of Dolan et al. 2018 and sorted according to the classification proposed in the cited study. The logNw-D0 and LWC-D0 two-dimensional distributions allowed further discussion around the applicability of other mid-latitude and global precipitation classification schemes (startiform/convection) in the region of interest. Finally, three precipitation case studies were analyzed with supporting polarimetric radar data in order to relate the DSD characteristics to the precipitation type and the microphysical processes involved in each case.


Author(s):  
M. I. Dzhalalova ◽  
A. B. Biarslanov ◽  
D. B. Asgerova

The state of plant communities in areas located in the Tersko-Sulak lowland was studied by assessing phytocenotic indicators: the structure of vegetation cover, projective cover, species diversity, species abundance and elevated production, as well as automated decoding methods. There are almost no virgin soils and natural phytocenoses here; all of them have been transformed into agrocenoses (irrigated arable lands and hayfields, rice-trees and pastures). The long-term impact on pasture ecosystems of natural and anthropogenic factors leads to significant changes in the indigenous communities of this region. Phytocenoses are formed mainly by dry-steppe types of cereals with the participation of feather grass, forbs and ephemera, a semi-desert haloxerophytic shrub - Taurida wormwood. At the base of the grass stand is common coastal wormwood and Taurida wormwood - species resistant to anthropogenic influences. Anthropogenic impacts have led to a decrease in the number of species of feed-rich grain crops and a decrease in the overall productivity of pastures. Plant communities in all areas are littered with ruderal species. The seasonal dynamics of the land cover of the sites was estimated by the methods of automatic decoding of satellite images of the Landsat8 OLI series satellite for 2015, dated by the periods: spring - May 20, summer - July 23, autumn - October 20. Satellite imagery data obtained by Landsat satellite with a resolution in the multispectral image of 30 m per pixel, and in the panchromatic image - 10 m per pixel, which correspond to the requirements for satellite imagery to assess the dynamics of soil and vegetation cover. Lower resolution data, for example, NDVI MODIS, does not provide a reliable reflection of the state of soil and vegetation cover under arid conditions. In this regard, remote sensing data obtained from the Internet resource https://earthexplorer.usgs.gov/ was used.


2019 ◽  
Vol 11 (6) ◽  
pp. 1782 ◽  
Author(s):  
Jacek Szulej ◽  
Paweł Ogrodnik ◽  
Beata Klimek

The article presents the results of research on the use of ceramic ware waste as aggregate in concrete production. Four concrete mixtures with aluminous cement were prepared, each with a different admixture of clinoptilolite. The only used aggregate was crushed waste ceramic sanitary ware obtained from a Polish sanitary fixture production plant. As part of the studies, a compressive test of cubic samples at different curing times ranging from 7 to 90 days was performed. Prior to the preparation of the samples, a sieve analysis and an elemental analysis of the obtained aggregate were conducted. In the framework of the testing, the bimodal distribution of clinoptilolite grains was determined, as well as its chemical composition. The conducted compressive tests demonstrated high strength of concrete containing ceramic aggregate and aluminous cement with an addition of clinoptilolite. In order to determine the impact that adding zeolite exerts on the phase composition and the structure of concrete samples, an analysis of the phase composition (XRD) and scanning electron microscopy examination (SEM) were performed. Furthermore, tests of abrasion, water penetration under pressure and frost resistance were conducted, determining particular properties of the designed mixtures. The abrasion tests have confirmed that the mixtures are highly abrasion-resistant and can be used as a topcoat concrete layer. The conducted tests of selected properties have confirmed the possibility of using waste ceramic cullet and a mineral addition of clinoptilolite in concrete production.


Sign in / Sign up

Export Citation Format

Share Document