scholarly journals Fabrication and Characterization of Bioglass

2018 ◽  
Vol 7 (2) ◽  
pp. 99-102
Author(s):  
Dalveer Singh ◽  
Sandeep Singh ◽  
Gurpreet Singh

Glasses are common in use now days. These are used in different applications like domestic, automobile, telecommunication etc. The glasses are very useful materials because of their impressive properties. Few years back a new generation of glasses were developed i.e. bioactive glasses and bioactive glass ceramics. The glasses are used for bone grafting now-a-days because of their impressive bioactive properties. These glasses have tendency to form bonds with the living tissue organs. The future of these glasses will be bright in dental, orthopedics and prosthetic applications. In the present work borosilicate glasses of different compositions have been studied. The different elements were added with appropriate mol% to compose a new bioglass composition. The samples were prepared by melt quench route. The samples were immersed for 21 days in SBF. The samples were characterized before and after immersion in SBF by different techniques. The XRD technique was done to confirm the amorphous nature of glass before immersion and after immersion. The SEM and EDX were done to check the changes on the surface after immersion. The sample S1 has better biocompatibility results than S2 andS3. The formation of apatite on the glass samples were confirmed by all techniques mentioned above.

Author(s):  
Bui Xuan Vuong

In this paper, three ceramic compositions 50SiO2-50CaO (A), 45SiO2-45CaO-10P2O5 (B) and 40SiO2-40CaO-20P2O5 (C) (wt %) were synthesized by using the sol-gel technique. XRD analysis demonstrates that only sample C can form the glass material. Treated temperatures and heated times were also evaluated. Analysis data showed that the bioglass 40SiO2-40CaO-20P2O5 (wt %) can successfully elaborate when the ceramic powder heated at 750 oC for 3 hours. ‘‘In vitro’’ experiment was effectuated to investigate the bioactivity of bioglass 40SiO2-40CaO-20P2O5 by soaking powder samples in SBF solution. Obtained result confirmed the formation of hydroxyapatite (HA) phase on glass’s surface after 15 days of immersion, in which HA formation orients following (211) and (222) miller planes in crystalline structure of HA phase. Keywords Sol-gel; bioglass; hydroxyapatite; SBF; bioactivity References [1] D.F. Williams, Definitions in Biomaterials, Consensus Conference for the European Society for Biomaterials, Chester, UK, 1986.[2] L.L. Hench, Bioceramics: From Concept to Clinic, Journal of the American Ceramic Society, 74 (1991) 1487.[3] L.L. Hench, The story of Bioglass, Journal of Materials Science: Materials in Medicine, 17 (2006) 967.[4] X.V. Bui, H. Oudadesse, Y. Le Gal, A. Mostafa, P.Pellen and G. Cathelineau, Chemical Reactivity of Biocomposite Glass-Zoledronate, Journal of the Australian Ceramic Society, 46 (2010) 24.[5] L.L. Hench, Genetic design of bioactive glass, Journal of the European Ceramic Society, 29 (2009) 1257.[6] S. Kumar, P. Vinatier, A. Levasseur, K.J. Rao, Investigations of structure and transport in lithium and silver borophosphate glasses, Journal of Solid State Chemistry, 177 (2004)1723.[7] Z. Hong, A. Liu, L. Chen, X. Chen, X. Jing, Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method, Journal of Non-Crystalline Solids, 355 (2009) 368.[8] D.B. Joroch, D.C. Clupper, Modulation of zinc release from bioactive sol–gel derived SiO2‐CaO‐ZnO glasses and ceramics, Journal of Biomedical Materials Research Part A, 82A (2007) 575.[9] J. Roman, S. Padilla, M. Vallet-Regi, Sol−Gel Glasses as Precursors of Bioactive Glass Ceramics, Chemistry of Materials, 15 (2003) 798.[10] J. Lao, J.M. Nedelec, Ph. Moretto, E. Jallot, Biological activity of a SiO2-CaO-P2O5 sol-gel glass highlighted by PIXE-RBS methods, Nuclear Instruments and Methods in Physics Research Section B, 245 (2006) 511.[11] [11] M. Vallet-Regi, L. Ruiz-Gonzalez, I. Izquierdo, J.M. Gonzalez-Calbet, Revisiting silica based ordered mesoporous materials: medical applications, Journal of Materials Chemistry, 16 (2006) 26.[12] W. Xia, J. Chang, Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method, Materials Letters 61 (2007) 3251.[13] R. Li, A.E. Clark, L.L. Hench, An investigation of Bioactive Glass Powders by Sol-Gel Processing, Transactions of 16th Annual Meeting of the Societey for Biomaterials, 12 (1990) 40.[14] J. Lao, J.M. Nedelec, P. Moretto, E. Jallot, Imaging physicochemical reactions occurring at the pore surface in binary bioactive glass foams by micro ion beam analysis, Applied Materials and Interfaces, 6 (2010) 1737.[15] A. Balamurugan, G. Balossier, S. Kannan, J. Michel, A.H.S. Rebelo, J.M.F. Ferreira, Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglas, Acta Biomaterialia, 3 (2007) 255.[16] Z. Hong, A. Liu, L. Chen, X. Chen, X. Jing, Bioactive glass prepared by sol–gel emulsion, Journal of Non-Crystalline Solids, 355 (2009) 368.[17] O. Peital, E.D. Zanotto, L.L. Hench, Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics, Journal of Non-Crystalline Solids, 292 (2001) 115.[18] J. Liu, X. Miao, Sol-gel derived bioglass as a coating material for porous alumina scaffolds, Ceramics International, 30 (2004) 1781.[19] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27 (2006) 2907.[20] M. Dziadek, B. Zagrajczuk, P. Jelen, Z. Olejniczak, K.C. Kowalska, Structural variations of bioactive glasses obtained by different synthesis routes, Ceramics International, 42 (2016) 14700.[21] R. Lakshmi, V. Velmurugan and S. Sasikumar, Preparation and Phase Evolution of Wollastonite by Sol-Gel Combustion Method Using Sucrose as the Fuel, Combustion Science and Technology, 185 (2013) 1777.[22] G. Voicu, A. Bădănoiu, E. Andronescu1, C. M. Chifiruc, Synthesis, characterization and bioevaluation of partially stabilized cements for medical applications, Central European Journal of Chemistry, 11 (2013) 1657.[23] M.V. Regi, Ceramics for medical applications, Journal of the Chemical Society, Dalton Transactions, 2 (2001) 97.[24] G. Voicu, A.I. Bădănoiu, E. Andronescu, C.M. Chifiruc, Synthesis, characterization and bioevaluation of partially stabilized cements for medical applications, Central European Journal of Chemistry, 11 (2013) 1657.M. Wu, T. Wang, Y. Wang, F. Li, M. Zhou, X. Wu, A novel and facile route for synthesis of fine tricalcium silicate powders, Materials letters, 227 (2018), 187.


2021 ◽  
Vol 16 (12) ◽  
pp. C12028
Author(s):  
Md.A.A. Samy ◽  
A. Lapertosa ◽  
L. Vannoli ◽  
C. Gemme ◽  
G.-F. Dalla Betta

Abstract CERN is planning to upgrade its Large Hadron Collider to the High Luminosity phase (HL-LHC), pushing detector technologies to cope with unprecedently demanding performance in terms of particle rate and radiation hardness. The ATLAS experiment decided to equip the innermost layer (L0) of its Inner Tracker (ITk) with small-pitch 3D pixels of two different geometries, i.e., 25 µm × 100 µm for the central barrel and 50 µm × 50 µm for the lateral rings. A new generation of 3D pixels featuring these small-pitch dimensions and reduced active thickness (∼150 µm) has been developed to this purpose within a collaboration of INFN and FBK since 2014. Recently, the R&D activities have been focused on the characterization of modules based on sensors compatible with the RD53A readout chip, which were tested in laboratory and at beam lines. In this paper, we report on the characterization of modules irradiated with protons up to a fluence of 1 × 1016 neq/cm2, including threshold tuning and noise measurements, and results from beam tests performed at DESY. Moreover, we will discuss about the electrical characteristics at wafer level and at module level before and after irradiation.


2018 ◽  
Vol 7 (4) ◽  
pp. 529-534
Author(s):  
R. N. Nnaji ◽  
J. O. Agunsoye ◽  
M. A. Bodude ◽  
O. S. I. Fayomi ◽  
I. O. Talabi

2002 ◽  
Vol 81 (11) ◽  
pp. 1937-1939 ◽  
Author(s):  
V. K. Tikhomirov ◽  
D. Furniss ◽  
A. B. Seddon ◽  
I. M. Reaney ◽  
M. Beggiora ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document