scholarly journals Implementasi Algoritma Greedy Pada Pewarnaan Wilayah Kecamatan Sukodadi Lamongan

2020 ◽  
Vol 6 (2) ◽  
pp. 29-38
Author(s):  
Umi Maftukhah ◽  
Siti Amiroch ◽  
Mohammad Syaiful Pradana

Graph theory can be applied in various fields of science such as transportation problems, communication networks, operations research, chemistry, cartography and so on. Graph theory does not only represent structure but in its application, a graph can also be colored. Many problems have graph coloring characteristics such as regional coloring. This regional coloring theory was applied to the map area of ​​Sukodadi District which consists of 20 villages. In this area coloring uses the Greedy algorithm by first making a dual graph consisting of 20 vertices and 43 edges. Based on the results of regional coloring, the minimum number of colors is 4, namely red, blue, green and yellow, with each neighboring village having a different color.

1999 ◽  
Vol 10 ◽  
pp. 353-373 ◽  
Author(s):  
D. E. Joslin ◽  
D. P. Clements

We describe a general approach to optimization which we term `Squeaky Wheel' Optimization (SWO). In SWO, a greedy algorithm is used to construct a solution which is then analyzed to find the trouble spots, i.e., those elements, that, if improved, are likely to improve the objective function score. The results of the analysis are used to generate new priorities that determine the order in which the greedy algorithm constructs the next solution. This Construct/Analyze/Prioritize cycle continues until some limit is reached, or an acceptable solution is found. SWO can be viewed as operating on two search spaces: solutions and prioritizations. Successive solutions are only indirectly related, via the re-prioritization that results from analyzing the prior solution. Similarly, successive prioritizations are generated by constructing and analyzing solutions. This `coupled search' has some interesting properties, which we discuss. We report encouraging experimental results on two domains, scheduling problems that arise in fiber-optic cable manufacturing, and graph coloring problems. The fact that these domains are very different supports our claim that SWO is a general technique for optimization.


CCIT Journal ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 170-176
Author(s):  
Anggit Dwi Hartanto ◽  
Aji Surya Mandala ◽  
Dimas Rio P.L. ◽  
Sidiq Aminudin ◽  
Andika Yudirianto

Pacman is one of the labyrinth-shaped games where this game has used artificial intelligence, artificial intelligence is composed of several algorithms that are inserted in the program and Implementation of the dijkstra algorithm as a method of solving problems that is a minimum route problem on ghost pacman, where ghost plays a role chase player. The dijkstra algorithm uses a principle similar to the greedy algorithm where it starts from the first point and the next point is connected to get to the destination, how to compare numbers starting from the starting point and then see the next node if connected then matches one path with the path). From the results of the testing phase, it was found that the dijkstra algorithm is quite good at solving the minimum route solution to pursue the player, namely by getting a value of 13 according to manual calculations


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hongyan Li ◽  
Xianfeng Ding ◽  
Jiang Lin ◽  
Jingyu Zhou

Abstract With the development of economy, more and more people travel by plane. Many airports have added satellite halls to relieve the pressure of insufficient boarding gates in airport terminals. However, the addition of satellite halls will have a certain impact on connecting flights of transit passengers and increase the difficulty of reasonable allocation of flight and gate in airports. Based on the requirements and data of question F of the 2018 postgraduate mathematical contest in modeling, this paper studies the flight-gate allocation of additional satellite halls at airports. Firstly, match the seven types of flights with the ten types of gates. Secondly, considering the number of gates used and the least number of flights not allocated to the gate, and adding the two factors of the overall tension of passengers and the minimum number of passengers who failed to transfer, the multi-objective 0–1 programming model was established. Determine the weight vector $w=(0.112,0.097,0.496,0.395)$ w = ( 0.112 , 0.097 , 0.496 , 0.395 ) of objective function by entropy value method based on personal preference, then the multi-objective 0–1 programming model is transformed into single-objective 0–1 programming model. Finally, a graph coloring algorithm based on parameter adjustment is used to solve the transformed model. The concept of time slice was used to determine the set of time conflicts of flight slots, and the vertex sequences were colored by applying the principle of “first come first serve”. Applying the model and algorithm proposed in this paper, it can be obtained that the average value of the overall tension degree of passengers minimized in question F is 35.179%, the number of flights successfully allocated to the gate maximized is 262, and the number of gates used is minimized to be 60. The corresponding flight-gate difficulty allocation weight is $\alpha =0.32$ α = 0.32 and $\beta =0.40$ β = 0.40 , and the proportion of flights successfully assigned to the gate is 86.469%. The number of passengers who failed to transfer was 642, with a failure rate of 23.337%.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 388 ◽  
Author(s):  
Seung-Mo Je ◽  
Jun-Ho Huh

The Republic of Korea (ROK) has four distinct seasons. Such an environment provides many benefits, but also brings some major problems when using new and renewable energies. The rainy season or typhoons in summer become the main causes of inconsistent production rates of these energies, and this would become a fatal weakness in supplying stable power to the industries running continuously, such as the aquaculture industry. This study proposed an improvement plan for the efficiency of Energy Storage System (ESS) and energy use. Use of sodium-ion batteries is suggested to overcome the disadvantages of lithium-ion batteries, which are dominant in the current market; a greedy algorithm and the Floyd–Warshall algorithm were also proposed as a method of scheduling energy use considering the elements that could affect communication output and energy use. Some significant correlations between communication output and energy efficiency have been identified through the OPNET-based simulations. The simulation results showed that the greedy algorithm was more efficient. This algorithm was then implemented with C-language to apply it to the Test Bed developed in the previous study. The results of the Test Bed experiment supported the proposals.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Minhua Shao ◽  
Lijun Sun ◽  
Xianzhi Shao

The sensor location problem (SLP) discussed in this paper is to find the minimum number and optimum locations of the flow counting points in the road network so that the traffic flows over the whole network can be inferred uniquely. Flow conservation system at intersections is formulated firstly using the turning ratios as the prior information. Then the coefficient matrix of the flow conservation system is proved to be nonsingular. Based on that, the minimal number of counting points is determined to be the total number of exclusive incoming roads and dummy roads, which are added to the network to represent the trips generated on real roads. So the task of SLP model based on turning ratios is just to determine the optimal sensor locations. The following analysis in this paper shows that placing sensors on all the exclusive incoming roads and dummy roads can always generate a unique network flow vector for any network topology. After that, a detection set composed of only real roads is proven to exist from the view of feasibility in reality. Finally, considering the roads importance and cost of the sensors, a weighted SLP model is formulated to find the optimal detection set. The greedy algorithm is proven to be able to provide the optimal solution for the proposed weighted SLP model.


2021 ◽  
Vol 13 (1) ◽  
pp. 53-73
Author(s):  
Bader Alshaqqawi ◽  
Sardar Anisul Haque ◽  
Mohammed Alreshoodi ◽  
Ibrahim Alsukayti

One of the critical design problems in Wireless Sensor Networks (WSNs) is the Relay Node Placement (RNP) problem. Inefficient deployment of RNs would have adverse effects on the overall performance and energy efficiency of WSNs. The RNP problem is a typical example of an NP-hard optimization problem which can be addressed using metaheuristics with multi-objective formulation. In this paper, we aimed to provide an efficient optimization approach considering the unconstrained deployment of energy-harvesting RNs into a pre-established stationary WSN. The optimization was carried out for three different objectives: energy consumption, network coverage, and deployment cost. This was approached using a novel optimization approach based on the integration of the Particle Swarm Optimization (PSO) algorithm and a greedy technique. In the optimization process, the greedy algorithm is an essential component to provide effective guidance during PSO convergence. It supports the PSO algorithm with the required information to efficiently alleviate the complexity of the PSO search space and locate RNs in the spots of critical significance. The evaluation of the proposed greedy-based PSO algorithm was carried out with different WSN scenarios of varying complexity levels. A comparison was established with two PSO variants: the classical PSO and a PSO hybridized with the pattern search optimizer. The experimental results demonstrated the significance of the greedy algorithm in enhancing the optimization process for all the considered PSO variants. The results also showed how the solution quality and time efficiency were considerably improved by the proposed optimization approach. Such improvements were achieved using a simple integration technique without adding to the complexity of the system and introducing additional optimization stages. This was more evident in the RNP scenarios of considerably large search spaces, even with highly complex and challenging setups.


2018 ◽  
Author(s):  
Weiwei Zhang ◽  
Jiafeng He ◽  
Guowang Gao ◽  
Lili Ren ◽  
Xuanjing Shen

Sign in / Sign up

Export Citation Format

Share Document