scholarly journals Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$

2018 ◽  
Vol 37 (4) ◽  
pp. 9
Author(s):  
Naim L. Braha ◽  
Ismet Temaj

Let $(x_k)$, for $k\in \mathbb{N}\cup \{0\}$  be a sequence of real or complex numbers and set $(EC)_{n}^{1}=\frac{1}{2^n}\sum_{j=0}^{n}{\binom{n}{j}\frac{1}{j+1}\sum_{v=0}^{j}{x_v}},$ $n\in \mathbb{N}\cup \{0\}.$  We present necessary and sufficient conditions, under which $st-\lim_{}{x_k}= L$ follows from $st-\lim_{}{(EC)_{n}^{1}} = L,$ where L is a finite number. If $(x_k)$ is a sequence of real numbers, then these are one-sided Tauberian conditions. If $(x_k)$ is a sequence of complex numbers, then these are two-sided Tauberian conditions.

2004 ◽  
Vol 41 (4) ◽  
pp. 391-403 ◽  
Author(s):  
Ferenc Móricz ◽  
Cihan Orhan

The first named author has recently proved necessary and sufficient Tauberian conditions under which statistical convergence (introduced by H. Fast in 1951) follows from statistical summability (C, 1). The aim of the present paper is to generalize these results to a large class of summability methods (,p) by weighted means. Let p = (pk : k = 0,1, 2,...) be a sequence of nonnegative numbers such that po > 0 and Let (xk) be a sequence of real or complex numbers and set for n = 0,1, 2,.... We present necessary and sufficient conditions under which the existence of the limit st-lim xk = L follows from that of st-lim tn = L, where L is a finite number. If (xk) is a sequence of real numbers, then these are one-sided Tauberian conditions. If (xk) is a sequence of complex numbers, then these are two-sided Tauberian conditions.


2001 ◽  
Vol 27 (7) ◽  
pp. 399-406 ◽  
Author(s):  
Ferenc Móricz ◽  
Ulrich Stadtmüller

We prove necessary and sufficient Tauberian conditions for sequences summable by weighted mean methods. The main results of this paper apply to all weighted mean methods and unify the results known in the literature for particular methods. Among others, the conditions in our theorems are easy consequences of the slowly decreasing condition for real numbers, or slowly oscillating condition for complex numbers. Therefore, practically all classical (one-sided as well as two-sided) Tauberian conditions for weighted mean methods are corollaries of our two main theorems.


2006 ◽  
Vol 43 (1) ◽  
pp. 115-129
Author(s):  
Árpád Fekete

The notions of statistical limit, limit inferior and limit superior of a measurable function at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\infty\) \end{document} were introduced by Móricz. These notions can be considered as the nondiscrete analogues of those introduced for sequences of numbers by H. Fast, J. A. Fridy and C. Orhan. Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(0 \not \equiv p\: \mathbb{R}_+ \to \mathbb{R}_+\) \end{document} be a nondecreasing function such that \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(p(0)=0\) \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mbox{st-\!}\liminf_{t \to \infty} \frac{p(\lambda t)}{p(t)} >1 \ \text{for every} \lambda >1.$$ \end{document} Given a real- or complex-valued function \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(f \in L_{{\rm loc}}^1 (\mathbb{R}_+)\) \end{document}, we define \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$s(x):= \int^x_0 f(u) \, du\ \text{and}\ \sigma(t) := \frac{1}{p(t)} \int^t_0 s(x) d p(x),\quad t>0.$$ \end{document} Our goal is to find necessary and sufficient conditions under which the existence of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\mbox{st-}\lim s(t)=l\) \end{document} follows from that of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\mbox{st-}\lim \sigma(t)=l\) \end{document}, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(l\) \end{document} is a finite number. In the case of real-valued functions we present one-sided Tauberian conditions, while in the case of complex-valued functions we present two-sided Tauberian conditions.


1966 ◽  
Vol 62 (2) ◽  
pp. 149-164 ◽  
Author(s):  
D. B. Mcalister

Conrad ((2)), has shown that any lattice group which obeys (C.F.) each strictly positive element exceeds at most a finite number of pairwise orthogonal elements may be constructed, from a family of simply ordered groups, by carrying out, alternately, the operations of forming finite direct sums and lexico extensions, at most a countable number of times. The main result of this paper, Theorem 3.1, gives necessary and sufficient conditions for a multilattice group, which obeys (ℋ*), to be isomorphic to a multilattice group which is constructed from a family of almost ordered groups, by carrying out, alternately, the operations of forming arbitrary direct sums and lexico extensions, any number of times; we call such a group a lexico sum of the almost ordered groups.


2013 ◽  
Vol 444-445 ◽  
pp. 621-624
Author(s):  
Zhi Bing Liu ◽  
Zhen Tu ◽  
Cheng Feng Xu

This paper studies the construction problems of five order nonnegative matrices from spectrum data. Let be a list of complex numbers with . Necessary and sufficient conditions for the existence of an entry-wise nonnegative 5×5 matrix with spectrum are presented.


2016 ◽  
Vol 8 (2) ◽  
pp. 279-283
Author(s):  
H.P. Malytska ◽  
I.V. Burtnyak

In this paper we consider the pointwise stabilization of the Poisson integral for the diffusion type equations with inertia in the case of finite number of parabolic degeneracy groups. We establish necessary and sufficient conditions of this stabilization for a class of bounded measurable initial functions.


10.37236/389 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Po-Yi Huang ◽  
Jun Ma ◽  
Yeong-Nan Yeh

Let $\vec{r}=(r_i)_{i=1}^n$ be a sequence of real numbers of length $n$ with sum $s$. Let $s_0=0$ and $s_i=r_1+\ldots +r_i$ for every $i\in\{1,2,\ldots,n\}$. Fluctuation theory is the name given to that part of probability theory which deals with the fluctuations of the partial sums $s_i$. Define $p(\vec{r})$ to be the number of positive sum $s_i$ among $s_1,\ldots,s_n$ and $m(\vec{r})$ to be the smallest index $i$ with $s_i=\max\limits_{0\leq k\leq n}s_k$. An important problem in fluctuation theory is that of showing that in a random path the number of steps on the positive half-line has the same distribution as the index where the maximum is attained for the first time. In this paper, let $\vec{r}_i=(r_i,\ldots,r_n,r_1,\ldots,r_{i-1})$ be the $i$-th cyclic permutation of $\vec{r}$. For $s>0$, we give the necessary and sufficient conditions for $\{ m(\vec{r}_i)\mid 1\leq i\leq n\}=\{1,2,\ldots,n\}$ and $\{ p(\vec{r}_i)\mid 1\leq i\leq n\}=\{1,2,\ldots,n\}$; for $s\leq 0$, we give the necessary and sufficient conditions for $\{ m(\vec{r}_i)\mid 1\leq i\leq n\}=\{0,1,\ldots,n-1\}$ and $\{ p(\vec{r}_i)\mid 1\leq i\leq n\}=\{0,1,\ldots,n-1\}$. We also give an analogous result for the class of all permutations of $\vec{r}$.


Sign in / Sign up

Export Citation Format

Share Document