Study of Impact of Climatic Variability on the Sea Surface Temperature and Chlorophyll-a Concentration Using Statistical Analysis on Satellite Derived Data for the Arabian Sea

Author(s):  
Naeem Syed ◽  
Syed Ahmed
Author(s):  
R. Shunmugapandi ◽  
S. Gedam ◽  
A. B. Inamdar

Abstract. Ocean surface phytoplankton responses to the tropical cyclone (TC)/storms have been extensively studied using satellite observations by aggregating the data into a weekly or bi-weekly composite. The reason behind is the significant limitations found in the satellite-based observation is the missing of valid data due to cloud cover, especially at the time of cyclone track passage. The data loss during the cyclone is found to be a significant barrier to efficiently investigate the response of chl-a and SST during cyclone track passage. Therefore it is necessary to rectify the above limitation to effectively study the impact of TC on the chlorophyll-a concentration (chl-a) and the sea surface temperature (SST) to achieve a complete understanding of their response to the TC prevailed in the Arabian Sea. Intending to resolve the limitation mentioned above, this study aims to reconstruct the MODIS-Aqua chl-a, and SST data using Data Interpolating Empirical Orthogonal Function (DINEOF) for all the 31 cyclonic events occurred in the Arabian Sea during 2003-2018 (16 years). Reconstructed satellite retrieved data covering all the cyclonic events were further used to investigate the chl-a and SST dynamics during TC. From the results, the exciting fact has been identified that only two TC over the eastern-AS were able to induce phytoplankton bloom. On investigating this scenario using sea surface temperature, it was disclosed that the availability of nutrients decides the suitable condition for the phytoplankton to proliferate in the surface ocean. Relevant to the precedent criterion, the results witnessed that the 2 TC (Phyan and Ockhi cyclone) prevailed in the eastern AS invoked a suitable condition for phytoplankton bloom. Other TC found to be less provocative either due to less intensity, origination region or the unsuitable condition. Thereby, gap-free reconstructed daily satellite-derived data efficiently investigates the response of bio-geophysical parameters during cyclonic events. Moreover, this study sensitised that though several TC strikes the AS, only two could impact phytoplankton productivity and SST found to highly consistent with the chl-a variability during the cyclone passage.


2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Bisman Nababan ◽  
Kristina Simamora

Variability of chlorophyll-a concentration and sea surface temperature (SST) in Natuna waters were analyzed using satellite data Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR). SeaWiFS data with a resolution of 9×9 km2 and AVHRR with a resolution of 4×4 km2 were the monthly average data downloaded from NASA website. Chlorophyll-a concentrations and SST were estimated using OC4v4 and MCSST algorithms. In general, the concentration of chlorophyll-a in Natuna waters ranged between 0.11-4.92 mg/m3 with an average of 0.56 mg/m3 during the west season and 0.09-2.93 mg/m3 with an average of 0.66 mg/m3 during the east season. Chlorophyll-a concentrations were relatively high seen in coastal areas, especially around the mouth of the Kapuas, Musi, and Batang Hari rivers allegedly caused by the high nutrient intake from the mainland. SST variability in Natuna waters ranged from 23.46-30.88 °C during the west season and tended to be lower than that the east season (27.91-31.95 °C). In addition, the SST values tended to be lower in the offshore than that inshore. During the west season (Nov-Feb) and the transitional season (Apr) in the years of Elnino Southern Oscillation (ENSO), the concentration of chlorophyll-a and the SST in Natuna waters was generally higher than that in non-ENSO years. The results of wind analyses showed that ENSO caused the change of direction and speed of wind from its normal conditions.Keywords: Sea surface temperature, chlorophyll-a, Natuna waters, ENSO, SeaWiFS, AVHRR


2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Nabil Balbeid ◽  
Agus Saleh Atmadipoera ◽  
Alan Frendy Koropitan

<p class="Paragraf"><em>Madden-Julian Oscillation (MJO) is a large-scale phenomenon that occurs in equatorial area, parti-cularly Indonesia. This research aimed to investigate the MJO propagation process and studied the correlation between MJO and sea surface temperature (SST) and chlorophyll-a. Sea variables (SST and chlorophyll-a) and atmosphere variables (</em><em>outgoing longwave radiation</em><em>/OLR, 1,5 km wind,</em><em> and</em><em> surface wind) were band-pass filtered for 20-100 days period. Spectral density from OLR and 1,5 km wind (2003-2012) shows that the MJO period was dominantly occurred for </em><em>40–50</em><em> days. </em><em>Average </em><em>pro-pagation</em><em> of</em><em> </em><em> MJO</em><em> </em><em>velocity </em><em>resulted from the atmospheric variable analysis by </em><em>Hovmöller</em><em> diagram was 4,7 m/s. Cross correlation between SST and OLR in South Java and Banda Sea result</em><em>s</em><em> a strong corre-lation during MJO active phase, where </em><em>MJO too</em><em>k </em><em> place first and was then followed by</em><em> the </em><em>decreasing </em><em>SST </em><em>along the equatorial region</em><em>.</em><em> Increasing chlorophyll-a concentration occured at some areas du</em><em>-</em><em>ring MJO active phase with relatively short phase delay. </em><em>During the MJO active phase, fluctuation of wind velocity generates variation over mixed layer depth and triggers upwelling /entrainment. Nutri-ent was upwelled to the water surface and hence increase phytoplankton production and chlorophyll-a concentration.</em></p><p><em> </em><strong><em>Keywords</em></strong><em>:</em><em> Madden Julian Oscillation, OLR, </em><em>sea surface temperature, surface chlorophyll-a</em></p>


2020 ◽  
Vol 200 ◽  
pp. 06002
Author(s):  
Dandi Arianto Pelly ◽  
Muh Aris Marfai ◽  
Evita Hanie Pangaribowo ◽  
Akhmad Fadholi

This study aimed to identify the effect of the positive Indian Ocean Dipole (IOD) phenomenon on the spatial, temporal distribution of chlorophyll-a concentrations in the East Season in Padang Sea in 2019. The method used in this research was the Kriging analysis method applied in oceanographic parameter satellite imagery extraction point data. By applying the method, we produced the maps of the spatial distribution variation of chlorophyll-a content and Sea Surface Temperature (SST). The data of IOD events in 2019 showed the occurrence of a strong positive IOD phenomenon that caused anomaly in the Sea Surface Temperature (SST) in Padang Sea. The interpretation of Aqua-Modis level 2 satellite image data showed that the sea surface temperature during the East Season was relatively cold, which was in the minimum temperature ranging from 18.5-22°C with a normal temperature condition of 28-29°C. The minimum chlorophyll-a concentration in the East Season was 0.252 mg/m3; while the maximum value reached 18.5 mg/m3. The distribution value of chlorophyll-a concentration was 1.028 mg/m3.The RMSe Cross Validation value obtained was 0.504 for SST and 0.363 for chlorophyll-a with a mean SST of -0.0005 and mean chlorophyll-a of -0.0039.


Sign in / Sign up

Export Citation Format

Share Document