scholarly journals EFFECT OF RIBLETS AND SUCTION ON A FLAT PLATE TURBULENT BOUNDARY LAYER

2006 ◽  
Vol 5 (1) ◽  
pp. 78
Author(s):  
M. O. Oyewola

This work presents hot-wire measurements in a flat plate turbulent boundarylayer, subjected to the combination of riblets and suction. The suction is applied through a porous strip for a range of suction rates. The effect of riblets and suction has been quantified through the measurements of mean velocity and Reynolds stresses downstream of the suction strip on the riblets surface. The results of the mean velocity and Reynolds stresses indicate that there is no significant change in the distributions of riblets and smooth wall. However, there exist some changes with the combination of suction and riblets relative to the smooth surface. These changes arise from the interference of suction with the mechanism of the layer. The results suggest that riblets may not alter the effect suction has on the boundary layer structures.

2000 ◽  
Vol 422 ◽  
pp. 319-346 ◽  
Author(s):  
DAVID B. DE GRAAFF ◽  
JOHN K. EATON

Despite extensive study, there remain significant questions about the Reynolds-number scaling of the zero-pressure-gradient flat-plate turbulent boundary layer. While the mean flow is generally accepted to follow the law of the wall, there is little consensus about the scaling of the Reynolds normal stresses, except that there are Reynolds-number effects even very close to the wall. Using a low-speed, high-Reynolds-number facility and a high-resolution laser-Doppler anemometer, we have measured Reynolds stresses for a flat-plate turbulent boundary layer from Reθ = 1430 to 31 000. Profiles of u′2, v′2, and u′v′ show reasonably good collapse with Reynolds number: u′2 in a new scaling, and v′2 and u′v′ in classic inner scaling. The log law provides a reasonably accurate universal profile for the mean velocity in the inner region.


2003 ◽  
Vol 125 (5) ◽  
pp. 863-870 ◽  
Author(s):  
Michael P. Schultz ◽  
Karen A. Flack

Flat-plate turbulent boundary layer measurements have been made on painted surfaces, smoothed by sanding. The measurements were conducted in a closed return water tunnel, over a momentum thickness Reynolds number Reθ range of 3000 to 16,000, using a two-component laser Doppler velocimeter (LDV). The mean velocity and Reynolds stress profiles are compared with those for smooth and sandgrain rough walls. The results indicate an increase in the boundary layer thickness (δ) and the integral length scales for the unsanded, painted surface compared to a smooth wall. More significant increases in these parameters, as well as the skin-friction coefficient Cf were observed for the sandgrain surfaces. The sanded surfaces behave similarly to the smooth wall for these boundary layer parameters. The roughness functions ΔU+ for the sanded surfaces measured in this study agree within their uncertainty with previous results obtained using towing tank tests and similarity law analysis. The present results indicate that the mean profiles for all of the surfaces collapse well in velocity defect form. The Reynolds stresses also show good collapse in the overlap and outer regions of the boundary layer when normalized with the wall shear stress.


1984 ◽  
Vol 28 (03) ◽  
pp. 186-201
Author(s):  
Lennart Löfdahl ◽  
Lars Larsson

An experimental investigation in which Reynolds stress profiles were measured in the thick three-dimensional turbulent boundary layer at the stern of a ship model has been carried out. The measurements were performed using a specially developed hot-wire technique in which the mean velocity component perpendicular to the surface was considered. A large number of results are given in diagrams, and an error estimation for the different Reynolds stresses is presented. Efforts have been made, when positioning the measured turbulence profiles, to enable future development of calculation methods based on these results. The measured profiles have revealed a strong influence of streamline convergence (divergence) on the Reynolds stresses. Also, the effects of wall curvature are of importance, and since most parts of the investigated region have a convex curvature the average level of the stresses is reduced.


1979 ◽  
Vol 101 (2) ◽  
pp. 193-198 ◽  
Author(s):  
M. M. Pimenta ◽  
R. J. Moffat ◽  
W. M. Kays

A regular, deterministic, rough surface was tested at four velocities from 11 to 40 m/s, with and without blowing, to evaluate the Stanton number and friction factor characteristics. Hot-wire data were taken to document the turbulence components, the Reynolds stresses, and the turbulent heat flux. Data are presented concerning the streamwise development of the mean and fluctuating components, and the effect of blowing. Correlation coefficients and mixing lengths were deduced from the hot-wire data and are also presented. While the mean velocity data showed only two allowable states for the boundary layer (laminar and “fully rough”), the turbulence structure indicated a third: “transitionally rough”. Distributions of u′v′/uτ2 and v′t′/uτtτ are similar, except for high blowing (F = 0.004). The turbulent Prandtl number lies between 0.85 and 1.0 for the entire layer, and a mixing length constant of κ = 0.41 describes the data with good accuracy for all velocities and all values of blowing tested.


1979 ◽  
Vol 193 (1) ◽  
pp. 341-347
Author(s):  
A. Goulas ◽  
R. C. Baker

Hot wire measurements at the exit of a small centrifugal compressor impeller are reported. Three different hot wire readings were obtained and stored on a magnetic tape for each point by gating the analogue hot wire signal with a pulse which indicated circumferential position. The combination of the three readings yielded the mean velocity and some Reynolds stresses at each point. The measurements show a ‘jet-wake’ profile towards the shroud and ‘isentropic’ flow near the hub.


Author(s):  
Redha Wahidi ◽  
Walid Chakroun ◽  
Sami Al-Fahad

Turbulent boundary layer flows over a flat plate with multiple transverse square grooves spaced 10 element widths apart were investigated. Mean velocity profiles, turbulence intensity profiles, and the distributions of the skin-friction coefficients (Cf) and the integral parameters are presented for two grooved walls. The two transverse square groove sizes investigated are 5mm and 2.5mm. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient was determined from the gradient of the mean velocity profiles in the viscous sublayer. Distribution of Cf in the first grooved-wall case (5mm) shows that Cf overshoots downstream of the groove and then oscillates within the uncertainty range and never shows the expected undershoot in Cf. The same overshoot is seen in the second grooved-wall case (2.5mm), however, Cf continues to oscillate above the uncertainty range and never returns to the smooth-wall value. The mean velocity profiles clearly represent the behavior of Cf where a downward shift is seen in the Cf overshoot region and no upward shift is seen in these profiles. The results show that the smaller grooves exhibit larger effects on Cf, however, the boundary layer responses to these effects in a slower rate than to those of the larger grooves.


1976 ◽  
Vol 77 (3) ◽  
pp. 473-497 ◽  
Author(s):  
L. J. S. Bradbury

This paper describes an investigation into the response of both the pulsed-wire anemometer and the hot-wire anemometer in a highly turbulent flow. The first part of the paper is concerned with a theoretical study of some aspects of the response of these instruments in a highly turbulent flow. It is shown that, under normal operating conditions, the pulsed-wire anemometer should give mean velocity and longitudinal turbulent intensity estimates to an accuracy of better than 10% without any restriction on turbulence level. However, to attain this accuracy in measurements of turbulent intensities normal to the mean flow direction, there is a lower limit on the turbulent intensity of about 50%. An analysis is then carried out of the behaviour of the hot-wire anemometer in a highly turbulent flow. It is found that the large errors that are known to develop are very sensitive to the precise structure of the turbulence, so that even qualitative use of hot-wire data in such flows is not feasible. Some brief comments on the possibility of improving the accuracy of the hot-wire anemometer are then given.The second half of the paper describes some comparative measurements in the highly turbulent flow immediately downstream of a normal flat plate. It is shown that, although it is not possible to interpret the hot-wire results on their own, it is possible to calculate the hot-wire response with a surprising degree of accuracy using the results from the pulsed-wire anemometer. This provides a rather indirect but none the less welcome check on the accuracy of the pulsed-wire results, which, in this very highly turbulent flow, have a certain interest in their own right.


1966 ◽  
Vol 25 (4) ◽  
pp. 719-735 ◽  
Author(s):  
H. Fiedler ◽  
M. R. Head

An improved version of Corrsin & Kistler's method has been used to measure intermittency in favourable and adverse pressure gradients, and the characteristic parameters of the intermittency have been related to the form parameterHof the mean velocity profiles.It is found that with adverse pressure gradients the centre of intermittency moves outward from the surface while the width of the intermittent zone decreases. The converse is true of favourable pressure gradients, and it seems likely that at sufficiently low values ofHthe flow over the full depth of the layer is only intermittently turbulent.A new method of intermittency measurement is presented which makes use of a photo-electric probe. Smoke is introduced into the boundary layer and illuminated by a narrow beam of parallel light normal to the surface. The photoelectric probe is focused on the illuminated region and a signal is generated when smoke passes through the focal point of the probe lens. Comparison of this signal with the output from a hot-wire at very nearly the same point shows the identity of smoke and turbulence distributions.


1988 ◽  
Vol 110 (2) ◽  
pp. 110-119 ◽  
Author(s):  
Y. T. Chew ◽  
R. L. Simpson

An explicit non-real time method of reducing triple sensor hot-wire anenometer data to obtain the three mean velocity components and six Reynolds stresses, as well as their turbulence spectra in three-dimensional flow is proposed. Equations which relate explicitly the mean velocity components and Reynolds stresses in laboratory coordinates to the mean and mean square sensors output voltages in three stages are derived. The method was verified satisfactorily by comparison with single sensor hot-wire anemometer measurements in a zero pressure gradient incompressible turbulent boundary layer flow. It is simple and requires much lesser computation time when compared to other implicit non-real time method.


Author(s):  
M. Agelinchaab ◽  
M. F. Tachie

A particle image velocimetry is used to study the characteristics of separated and reattached turbulent flow over two-dimensional transverse blocks of square, rectangular and semi-circular cross-sections fixed to the bottom wall of an open channel. The ratio of upstream boundary layer thickness to block height is considerably higher than in prior studies. The results show that the mean and turbulent statistics in the recirculation region and downstream of reattachment are significantly different from the upstream boundary layer. The variation of the Reynolds stresses along the separating streamlines is discussed within the context of vortex stretching, longitudinal strain rate and wall damping. It appears wall damping is a more dominant mechanism in the vicinity of reattachment. The levels of turbulence diffusion and production by the normal stresses are significantly higher than in classical turbulent boundary layers. The bulk of turbulence production occurs in mid-layer and transported into the inner and outer layers. The results also reveal that the curvature of separating streamline, separating bubble beneath it as well as the mean velocity and turbulent quantities depend strongly on block geometry.


Sign in / Sign up

Export Citation Format

Share Document