turbulent statistics
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 43)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
pp. 1-16
Author(s):  
Surya Chakrabarti ◽  
Datta V. Gaitonde ◽  
Sasidharan Nair Unnikrishnan ◽  
Cory Stack ◽  
Florian Baier ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 449
Author(s):  
Nadia Kianvashrad ◽  
Doyle Knight

The recent revival of interest in developing new hypersonic vehicles brings attention to the need for accurate prediction of hypersonic flows by computational methods. One of the challenges is prediction of aerothermodynamic loading over the surface of the vehicles. Reynolds Average Navier-Stokes (RANS) methods have not shown consistent accuracy in prediction of such flows. Therefore, new methods including Large Eddy Simulations (LES) should be investigated. In this paper, the LES method is used for prediction of the boundary layer over a flat plate. A new recycling-rescaling method is tested. The method uses total enthalpy and static pressure along with the velocity components to produce the best results for the Law of the Wall, turbulent statistics and turbulent Prandtl number.


2021 ◽  
Author(s):  
Zelong Yuan ◽  
Yunpeng Wang ◽  
Chenyue Xie ◽  
Jianchun Wang

Abstract A dynamic nonlinear algebraic model with scale-similarity dynamic procedure (DNAM-SSD) is proposed for subgrid-scale (SGS) stress in large-eddy simulation of turbulence. The model coefficients of the DNAM-SSD model are adaptively calculated through the scale-similarity relation, which greatly simplifies the conventional Germano-identity based dynamic procedure (GID). The a priori study shows that the DNAM-SSD model predicts the SGS stress considerably better than the conventional velocity gradient model (VGM), dynamic Smagorinsky model (DSM), dynamic mixed model (DMM) and DNAM-GID model at a variety of filter widths ranging from inertial to viscous ranges. The correlation coefficients of the SGS stress predicted by the DNAM-SSD model can be larger than 95% with the relative errors lower than 30%. In the a posteriori testings of LES, the DNAM-SSD model outperforms the implicit LES (ILES), DSM, DMM and DNAM-GID models without increasing computational costs, which only takes up half the time of the DNAM-GID model. The DNAM-SSD model accurately predicts plenty of turbulent statistics and instantaneous spatial structures in reasonable agreement with the filtered DNS data. These results indicate that the current DNAM-SSD model is attractive for the development of highly accurate SGS models for LES of turbulence.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3108
Author(s):  
Seyedeh Fatemeh Nabaei ◽  
Hossein Afzalimehr ◽  
Jueyi Sui ◽  
Bimlesh Kumar ◽  
Seyed Hamidreza Nabaei

In the present experimental study, the effect of vegetation on flow structure and scour profile around a bridge abutment has been investigated. The vegetation in the channel bed significantly impacted the turbulent statistics and turbulence anisotropy. Interestingly, compared to the channel without vegetation, the presence of vegetation in the channel bed dramatically reduced the primary vortex, but less impacts the wake vortex. Moreover, the tangential and radial velocities decreased with the vegetation in the channel bed, while the vertical velocity (azimuthal angle > 90°) had large positive values near the scour hole bed. Results showed that the presence of the vegetation in the channel bed caused a noticeable decrease in the Reynolds shear stress. Analysis of the Reynolds stress anisotropy indicated that the flow had more tendency to be isotropic for the vegetated bed. Results have shown that the anisotropy profile changes from pancake-shaped to cigar-shaped in the un-vegetated channel. In contrast, it had the opposite reaction for the vegetated bed.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 396
Author(s):  
Ivette Rodriguez ◽  
Oriol Lehmkuhl

The flow topology of the wake behind a circular cylinder at the super-critical Reynolds number of Re=7.2×105 is investigated by means of large eddy simulations. In spite of the many research works on circular cylinders, there are no studies concerning the main characteristics and topology of the near wake in the super-critical regime. Thus, the present work attempts to fill the gap in the literature and contribute to the analysis of both the unsteady wake and the turbulent statistics of the flow. It is found that although the wake is symmetric and preserves similar traits to those observed in the sub-critical regime, such as the typical two-lobed configuration in the vortex formation zone, important differences are also observed. Owing to the delayed separation of the flow and the transition to turbulence in the attached boundary layer, Reynolds stresses peak in the detached shear layers close to the separation point. The unsteady mean flow is also investigated, and topological critical points are identified in the vortex formation zone and the near wake. Finally, time-frequency analysis is performed by means of wavelets. The study shows that in addition to the vortex shedding frequency, the inception of instabilities that trigger transition to turbulence occurs intermittently in the attached boundary layer and is registered as a phenomenon of variable intensity in time.


Author(s):  
Young-Woo Yi ◽  
◽  
Bhupendra Singh Chauhan ◽  
Hee-Chang Lim ◽  
◽  
...  

Large Eddy Simulations (LES) has been widely applied and used in several decades to simulate a turbulent boundary layer in the numerical domain. In this study, we aimed to make a synthetic inflow generator (SIG) yielding an appropriate property of turbulent boundary layer in the inlet section and making quick development in the downstream of a three-dimensional domain. In order to achieve turbulent boundary layer quickly in a limited domain, the oscillating term was implemented in the well-defined boundary layer, which was expected to make faster convergence in the calculation. Cholesky decomposition was also applied to possess turbulent statistics such as the randomness and correlation of turbulent flow. In a result, the oscillating inflow did not show the faster convergence, but it indicated a possibility to improve statistical quantities in the downstream. In addition, regarding the mean flow characteristics were very close to the calculation without the oscillating flow. On the other hand, the turbulent statistics were improved depending on the oscillating magnitude.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 374
Author(s):  
Carlos Alberto Duque-Daza ◽  
Jesus Ramirez-Pastran ◽  
Santiago Lain

The presence of spherical solid particles immersed in an incompressible turbulent flow was numerically investigated from the perspective of the particle mass fraction (PMF or ϕm), a measure of the particle-to-fluid mass ratio. Although a number of different changes have been reported to be obtained by the presence of solid particles in incompressible turbulent flows, the present study reports the findings of varying ϕm in the the turbulent behaviour of the flow, including aspects such as: turbulent statistics, skin-friction coefficient, and the general dynamics of a particle-laden flow. For this purpose, a particle-laden turbulent channel flow transporting solid particles at three different friction Reynolds numbers, namely Reτ=180, 365, and 950, with a fixed particle volume fraction of ϕv=10−3, was employed as conceptual flow model and simulated using large eddy simulations. The value adopted for ϕv allowed the use of a two-way coupling approach between the particles and the flow or carrier phase. Three different values of ϕm were explored in this work ϕm≈1,2.96, and 12.4. Assessment of the effect of ϕm was performed by examining changes of mean velocity profiles, velocity fluctuation profiles, and a number of other relevant turbulence statistics. Our results show that attenuation of turbulence activity of the carrier phase is attained, and that such attenuation increases with ϕm at fixed Reynolds numbers and ϕv. For the smallest Reynolds number case considered, flows carrying particles with higher ϕm exhibited lower energy requirements to sustain constant fluid mass flow rate conditions. By examining the flow velocity field, as well as instantaneous velocity components contours, it is shown that the attenuation acts even on the largest scales of the flow dynamics, and not only at the smaller levels. These findings reinforce the concept of a selective stabilising effect induced by the solid particles, particularly enhanced by high values of ϕm, which could eventually be exploited for improvement of energetic efficiency of piping or equivalent particles transport systems.


2021 ◽  
Author(s):  
Rozie Zangeneh

Abstract Flight vehicles traveling at supersonic or hypersonic speeds are vulnerable to the onset of surface roughness, which can result in changes in the state of the boundary layer, ultimately affecting the performance of the vehicle. While the majority of the wetted surface area of a vehicle is relatively smooth, every vehicle will contain roughness on some level. The concept of similarity between smooth- and rough-wall flows is of great practical importance as most computational and analytical modeling tools rely on it either explicitly or implicitly in predicting flows over rough walls. While a number of important questions have yet to be answered, significant progress has been made in the understanding of flows over rough surfaces in recent years. This paper will be conducting numerical research in rough-wall-bounded turbulent flows in supersonic regimes. Wall-modeled Large Eddy Simulation (WMLES) on a flat plate with various roughness ratios will be conducted at M∞ = 2 to evaluate the boundary layer responses. These responses will be characterized in ensemble averaged mean velocity characteristics as well as turbulent intensity responses through the Reynolds Stresses. The second goal is to characterize the streamwise development of mechanical distortions in the domain. In addition, the near-wall coherent structures will be analyzed to determine the impact of roughness effects. The mean and turbulent statistics scaled by the roughness friction velocity will be compared to other results.


2021 ◽  
Author(s):  
Michael Lewandowski ◽  
Paul Kristo ◽  
Abdullah Weiss ◽  
Mark Kimber

Abstract The near field mixing phenomenon created by a round jet with three slot lobes exhausting into a crossflow are investigated at a velocity ratio of 0.5. Time-resolved particle image velocimetry measurements provide instantaneous velocity fields of the slotted jet in crossflow, allowing for evaluation of the first and second order turbulent statistics in two perpendicular planes of interest. The independently controlled jet exit and crossflow inlet are first characterized extensively to confirm the velocity ratio and anticipated momentum exchanges. Spanwise and transverse mean velocity profiles reveal that the interaction of the three slot lobes and the center round jet primarily occur in the immediate jet exit region, though residual effects are also found in the wake. Evaluation of the Reynold stresses aims to quantify the near region mixing between the jets collated geometric features and their interaction with the crossflow. Frequency analysis reveals that low-frequency harmonics in the wake region provide greater energy contributions than that of the higher-frequency harmonics found along the leading edge shear layer. This behavior is attributed to the low velocity ratio, where the freestream velocity is twice as large as the jet exit velocity. The experimental data and observations herein serve analogous computational modeling efforts for the slotted jet in crossflow at low velocity ratios, with ample information to inform necessary boundary conditions, fluid properties, and flow fields for validation.


Sign in / Sign up

Export Citation Format

Share Document