scholarly journals Investigation of PCBM Concentration on the Performance of Small Organic Solar Cell

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yasser A. M. Ismail ◽  
T. Soga ◽  
T. Jimbo

We have fabricated bulk heterojunction organic solar cells using coumarin 6 (C6) as a small organic dye, for light harvesting and electron donating, with fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), acting as an electron acceptor, by spin-coating technique of the blend solutions. We have studied effect of PCBM concentration on photocurrent and performance parameters of the solar cells. We found that the optical absorption of the dye increased with increasing its concentration in the active layer blends. The higher concentrations of PCBM in active layer enhanced the photocurrent of the solar cells, as a result of improving charge carrier separation and electron transport in solar cell active layer. The improved charge carrier separation between C6, as a donor, and PCBM, as an acceptor, was indicated through the formation of bulk heterojunction by blending C6 with PCBM. The formation of C6:PCBM bulk heterojunction blend was confirmed through the symbatic behavior of the corresponding solar cell and, also, through the homogeneity and smoothing in the atomic force microscopy images of the C6:PCBM blend films. For the same reasons, the performance parameters of the C6:PCBM solar cell improved by modification of the PCBM concentration in the solar cell active layer.

2020 ◽  
Vol 8 (44) ◽  
pp. 23628-23636
Author(s):  
Xinyu Jiang ◽  
Hongwon Kim ◽  
Peter S. Deimel ◽  
Wei Chen ◽  
Wei Cao ◽  
...  

The nanoscale architecture of active layer based on wide bandgap non-fullerene solar cells exhibits pronounced influence by the solvent additive.


Author(s):  
Abdullah Almohammedi ◽  
Yasser Abdelrady Masoud Ismail ◽  
Mohd Taukeer Khan ◽  
Mohamed Benghanem ◽  
Saleh N Alamri ◽  
...  

Abstract In the present work, a thin film of tin (Sn) metal, instead of aluminum, was deposited as a back electrode, using thermal evaporation, for fabricating organic solar cell composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C71 butyric acid methyl ester (PC71BM). The effect of post-thermal annealing on performance parameters of the solar cell has been investigated at low temperatures (suitable for organic solar cells) up to 180 oC. In addition, effect of thermal annealing on morphological (using scanning electron microscopy) and electrical properties (using Hall Effect setup) of the Sn thin films was reported and discussed here. The obtained minor effect of the thermal annealing on morphological and electrical properties of Sn thin films is offset by an improvement in the performance parameters of solar cells after post-annealing at 160 oC. The present study shows good electrical properties of the Sn thin films which are comparable with those of aluminum thin films.


2015 ◽  
Vol 3 (41) ◽  
pp. 10799-10812 ◽  
Author(s):  
Ardalan Armin ◽  
Pascal Wolfer ◽  
Paul E. Shaw ◽  
Mike Hambsch ◽  
Fatemeh Maasoumi ◽  
...  

Bulk heterojunction (BHJ) organic solar cells and photodiodes require optimised active layer structures for both charge carrier photo-generation and extraction to occur efficiently.


2017 ◽  
Vol 751 ◽  
pp. 435-441
Author(s):  
Wantana Koetniyom ◽  
Anusit Keawprajak ◽  
Kanpitcha Jiramitmongkon ◽  
Udom Asawapirom

This research was focused on the effect of solid crystallization additive namely 1,4-dichlorobenzene (PDCB) in the 1:2 (w/w) active layer of benzothiadiazole/thiophene-based copolymers (PFTBzTT) to [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) on the morphology and performance of bulk heterojunction (BHJ) organic solar cells. The active layer was deposited by spin-coating with chloroform solutions by different PDCB additive concentrations from 0-52 mg/ml. The inclusion of additive into the polymer solution was able to improve the performance of BHJ solar cells. The maximum power conversion efficiency (PCE) of 0.84% achieved for a cell with PDCB concentration of 36 mg/ml after annealing at 180 °C for 20 min. The XRD and TEM techniques used to analyse the crystal structure and morphology of the thin films. From these results were found that PDCB additive presented higher level of PCBM crystal structure by more aggregation of PCBM and a larger extent of phase separation than those of the films without additive. The AFM results demonstrated that the optimum PDCB concentration and annealing process helped PCBM aggregated into micron sized crystal rods.


2017 ◽  
Vol 10 (4) ◽  
pp. 885-892 ◽  
Author(s):  
Nicola Gasparini ◽  
Luca Lucera ◽  
Michael Salvador ◽  
Mario Prosa ◽  
George D. Spyropoulos ◽  
...  

We present a novel ternary organic solar cell with an uncommonly thick active layer (∼300 nm), featuring thickness invariant charge carrier recombination and delivering 11% power conversion efficiency (PCE).


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6890
Author(s):  
Georgy Grancharov ◽  
Mariya-Desislava Atanasova ◽  
Radostina Kalinova ◽  
Rositsa Gergova ◽  
Georgi Popkirov ◽  
...  

In this study, some crucial parameters were determined of flexible polymer–organic solar cells prepared from an active layer blend of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) mixed in 1:1 mass ratio and deposited from chlorobenzene solution by spin-coating on poly(ethylene terephthalate) (PET)/ITO substrates. Additionally, the positive effect of an electron transport layer (ETL) prepared from zinc oxide nanoparticles (ZnO np) on flexible photovoltaic elements’ performance and stability was investigated. Test devices with above normal architecture and silver back electrodes deposed by magnetron sputtering were constructed under environmental conditions. They were characterized by current-voltage (I–V) measurements, quantum efficiency, impedance spectroscopy, surface morphology, and time–degradation experiments. The control over morphology of active layer thin film was achieved by post-deposition thermal treatment at temperatures of 110–120 °C, which led to optimization of device morphology and electrical parameters. The impedance spectroscopy results of flexible photovoltaic elements were fitted using two R||CPE circuits in series. Polymer–organic solar cells prepared on plastic substrates showed comparable current–voltage characteristics and structural properties but need further device stability improvement according to traditionally constructed cells on glass substrates.


2017 ◽  
Vol 57 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Julius Važgėla ◽  
Meera Stephen ◽  
Gytis Juška ◽  
Kristijonas Genevičius ◽  
Kęstutis Arlauskas

In this work we investigate ternary blends of an active layer in bulk heterojunction solar cells and estimate the influence of their composition on solar cell parameters such as efficiency, mobility and recombination. The studied ternary blends are composed of low bandgap polymer poly[2,6-(4,4-bis(2-ethylhexyl)dithieno[3,2-b:2,3-d]silole)-alt-4,7-(2,1,3 benzothiadiazole)] (Si-PCPDTBT), high bandgap polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The Langevin recombination reduction factor as well as charge carrier mobilities show an increasing trend with increasing Si-PCPDTBT content in the blends. The highest efficiencies have been achieved for the optimized blends of Si-PCPDTBT:P3HT:PCBM with ratios of 0.4:0.6:1, respectively.


MRS Advances ◽  
2018 ◽  
Vol 3 (33) ◽  
pp. 1891-1900 ◽  
Author(s):  
Shahidul Alam ◽  
Rico Meitzner ◽  
Christian Kaestner ◽  
Christoph Ulbricht ◽  
Stephanie Hoeppener ◽  
...  

ABSTRACTThe bulk heterojunction morphology of organic solar cells widely controls their device efficiency and stability. Structural order and domain size of the donor phase strongly impact the charge separation efficiency, recombination rates, and the hole percolation through the bulk to the electrode. Herewith, we report a comprehensive study on the control of polymeric order already initiated in solution by the introduction of orthogonal solvent additives to the common solution of anthracene containing poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene) (PPE-PPV) copolymer, bearing statistically substituted linear octyloxy and 2-ethylhexyloxy side-chains in 1:1 ratio along the backbone (AnE-PVstat), and fullerene derivative phenyl-C61-butyric acid methyl ester (PCBM). The first solvent, a 1:1 blend of chlorobenzene and chloroform, had been discovered to promote phase separation in solution and deposited films. This effect could be further enhanced and was precisely controlled by addition of methanol to the common solution in various volume fractions. Thus the ability to transfer the polymer aggregates from the solution into films was applied to solar cells and is investigated in detail.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2627 ◽  
Author(s):  
Ary R. Murad ◽  
Ahmed Iraqi ◽  
Shujahadeen B. Aziz ◽  
Sozan N. Abdullah ◽  
Mohamad A. Brza

In this review paper, we present a comprehensive summary of the different organic solar cell (OSC) families. Pure and doped conjugated polymers are described. The band structure, electronic properties, and charge separation process in conjugated polymers are briefly described. Various techniques for the preparation of conjugated polymers are presented in detail. The applications of conductive polymers for organic light emitting diodes (OLEDs), organic field effect transistors (OFETs), and organic photovoltaics (OPVs) are explained thoroughly. The architecture of organic polymer solar cells including single layer, bilayer planar heterojunction, and bulk heterojunction (BHJ) are described. Moreover, designing conjugated polymers for photovoltaic applications and optimizations of highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy levels are discussed. Principles of bulk heterojunction polymer solar cells are addressed. Finally, strategies for band gap tuning and characteristics of solar cell are presented. In this article, several processing parameters such as the choice of solvent(s) for spin casting film, thermal and solvent annealing, solvent additive, and blend composition that affect the nano-morphology of the photoactive layer are reviewed.


Sign in / Sign up

Export Citation Format

Share Document