scholarly journals Staphylococcus aureus Infection Induced Oxidative Imbalance in Neutrophils: Possible Protective Role of Nanoconjugated Vancomycin

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Subhankari Prasad Chakraborty ◽  
Panchanan Pramanik ◽  
Somenath Roy

Staphylococcus aureus infection causes oxidative stress in neutrophils. The immune cells use reactive oxygen species (ROS) for carrying out their normal functions while an excess amount of ROS can attack cellular components that lead to cell damage. The present study was aimed to test the protective role of nanoconjugated vancomycin against vancomycin-sensitive Staphylococcus aureus (VSSA) and vancomycin-resistant Staphylococcus aureus (VRSA) infection induced oxidative stress in neutrophils. VSSA- and VRSA-infection were developed in Swiss mice by intraperitoneal injection of 5×106 CFU/mL bacterial solutions. Nanoconjugated vancomycin was treated to VSSA- and VRSA-infected mice at its effective dose for 10 days. Vancomycin was treated to VSSA and VRSA infected mice at similar dose, respectively, for 10 days. The result reveals that in vivo VSSA and VRSA infection significantly increases the level of lipid peroxidation, protein oxidation, oxidized glutathione level, and nitrite generation and decreases the level of reduced glutathione, antioxidant enzyme status, and glutathione-dependent enzymes as compared to control group; which were increased or decreased significantly near to normal in nanoconjugated vancomycin-treated group. These finding suggests the potential use and beneficial protective role of nanoconjugated vancomycin against VSSA and VRSA infection induced oxidative imbalance in neutrophils.

2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Subhankari Prasad Chakraborty ◽  
Santanu Kar Mahapatra ◽  
Sumanta Kumar Sahu ◽  
Sabyasachi Das ◽  
Satyajit Tripathy ◽  
...  

Staphylococcus aureusis the most frequently isolated pathogen causing bloodstream infections, skin and soft tissue infections and pneumonia. Lymphocyte is an important immune cell. The aim of the present paper was to test the ameliorative role of nanoconjugated vancomycin against Vancomycin-sensitiveStaphylococcus aureus(VSSA) and vancomycin-resistantStaphylococcus aureus(VRSA) infection-induced oxidative stress in lymphocytes. VSSA and VRSA infections were developed in Swiss mice by intraperitoneal injection of  CFU/mL bacterial solutions. Nanoconjugated vancomycin was adminstrated to VSSA- and VRSA-infected mice at its effective dose for 10 days. Vancomycin was adminstrated to VSSA- and VRSA-infected mice at a similar dose, respectively, for 10 days. Vancomycin and nanoconjugated vancomycin were adminstrated to normal mice at their effective doses for 10 days. The result of this study reveals that in vivo VSSA and VRSA infection significantly increases the level of lipid peroxidation, protein oxidation, oxidized glutathione level, nitrite generation, nitrite release, and DNA damage and decreases the level of reduced glutathione, antioxidant enzyme status, and glutathione-dependent enzymes as compared to control group, which were increased or decreased significantly near to normal in nanoconjugated vancomycin-treated group. These findings suggest the potential use and beneficial role of nanoconjugated vancomycin against VSSA and VRSA infection-induced oxidative stress in lymphocytes.


2020 ◽  
Vol 8 (1) ◽  
pp. 78
Author(s):  
Mohammed Kassem ◽  
Abdel-Fattah Ali ◽  
Seham Y. Abo-kora ◽  
Nesreen Shawky

This study investigates the modulating effect of ginseng against testicular toxicity, oxidative stress and changes in some biochemical parameters induced by doxorubicin. Twenty male rats were divided into four groups. The 1st group received distilled water orally (control group), The 2nd group received doxorubicin (5 mg/kg b.wt. intrapertenoineal) once a week for eight weeks, The 3rd group received ginseng extract (200 mg/kg b.wt.) daily for eight weeks and the 4th group received doxorubicin with ginseng extract by the same doses as in the 2nd and the 3rd groups respectively. At the end of the 8th week, blood and semen samples were taken for biochemical and semen analysis, respectively. The doxorubicin treated group had significantly higher serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), Creatine kinase (CK) and lactate dehydrogenase (LDH) along with lower levels of total protein, albumin and globulin. In addition, a significant decrease in antioxidant enzymes (SOD, CAT, GSHPx), and glutathione (GSH) associated with higher level of malondialdehyde (MDA) were observed. At the same time, the group that took doxorubicin with ginseng did not differ from control group in terms of these parameters. Male fertility study showed changes in testosterone and semen analysis in both groups treated with doxorubicin, while the group that took doxorubicin with ginseng showed an improvement towards control levels of these parameters. Thus ginseng supplement can reduce the negative effects of doxorubicin- induce.  


2011 ◽  
Vol 31 (6) ◽  
pp. 565-573 ◽  
Author(s):  
M Tutanc ◽  
V Arica ◽  
N Yılmaz ◽  
A Nacar ◽  
I Zararsiz ◽  
...  

Aim: In cyclosporin-A (CsA)-induced toxicity, oxidative stress has been implicated as a potential responsible mechanism. Therefore, we aimed to investigate the protective role of erdosteine against CsA-induced nephrotoxicity in terms of tissue oxidant/antioxidant parameters and light microscopy in rats. Materials and methods: Wistar albino rats were randomly separated into four groups. Group 1 rats treated with sodium chloride served as the control, group 2 rats were treated with CsA, group 3 with CsA plus erdosteine, and group 4 with erdosteine alone. Animals were killed and blood samples were analyzed for blood urea nitrogen (BUN), serum creatinine (Cr), uric acid (UA), total protein (TP), and albumin (ALB) levels. Kidney sections were analyzed for malondialdehyde (MDA) and nitric oxide (NO) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, as well as for histopathological changes. Results: In the CsA group, MDA, GSH-Px, BUN, and Cr levels were increased. The TP and ALB levels were decreased. These changes had been improved by erdosteine administration. Other biochemical parameters did not show any significant change. Conclusion: These results indicate that erdosteine produces a protective mechanism against CsA-induced nephrotoxicity and suggest a role of oxidative stress in pathogenesis.


Biomedicine ◽  
2020 ◽  
Vol 39 (2) ◽  
pp. 333-338
Author(s):  
Kalaivani Manokaran ◽  
Vasanthalaxmi Krishnananda Rao ◽  
Nilima . ◽  
Manjula Shimoga Durgoji Rao ◽  
Sucheta Prasanna Kumar

Introduction and Aim: Oxidative stress plays a very important role in endosulfan-induced toxic effects on reproductive organs. Vitamin C is a potent antioxidant which plays an important role in decreasing oxidative stress. The present study was aimed to investigate the protective role of vitamin C against endosulfan-induced testicular toxicity in Wistar rats. To investigate a protective effect of vitamin C against endosulfan induced toxicity on biochemical changes. Materials and Methods: Seventy male neonatal Wistar rats were divided into  seven groups. The group  I was taken as the control group, the endosulfan-treated were grouped into II (3 mg/kg body weight (BW) and group III (6 mg/kg BW), Group IV (9 mg/kg BW) and Group V (12 mg/kg BW). Group VI (9 mg/kg BW) and group VII (12 mg/kg BW) were pretreated with vitamin C (20 mg/kg BW) for 60 days. After  the experimental procedures, the testicular weight, lactate dehydrogenase (LDH) enzyme and testosterone in plasma, LDH, steroidogenic enzymes 3?-HSD and 17?-HSD in testis were evaluated. One-way ANOVA was used to determine the statistical significance. Results: Significant improvement in the testicular weight (P<0.05) , LDH (P<0.05) levels both in plasma and testis, increase in testosterone(P<0.001) and steroidogenic enzyme levels(P<0.001) was observed in the group pretreated with vitamin C treated group when compared to the endosulfan treated group. Conclusion: Vitamin C decreases the toxic effect of endosulfan on testis. The present action might be  due to its antioxidative properties.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jing-Shang Wang ◽  
Ye Huang ◽  
Shuping Zhang ◽  
Hui-Jun Yin ◽  
Lei Zhang ◽  
...  

Hyperglycemia fluctuation is associated with diabetes mellitus (DM) complications when compared to persistent hyperglycemia. Previous studies have shown that paeoniflorin (PF), through its antiapoptosis, anti-inflammation, and antithrombotic properties, effectively protects against cardiovascular and cerebrovascular disease. However, the mechanism underlying the protection from PF against vascular injuries induced by hyperglycemia fluctuations remains poorly understood. Herein, we investigated the potential protective role of PF on human umbilical vein endothelial cells (HUVECs) subjected to intermittent glucose levels in vitro and in DM rats with fluctuating hyperglycemia in vivo. A remarkable increased apoptosis associated with elevated inflammation, increased oxidative stress, and high protein level of PKCβ1 was induced in HUVECs by intermittently changing glucose for 8 days, and PF recovered those detrimental changes. LY333531, a potent PKCβ1 inhibitor, and metformin manifested similar effects. Additionally, in DM rats with fluctuating hyperglycemia, PF protected against vascular damage as what has been observed in vitro. Taken together, PF attenuates the vascular injury induced by fluctuant hyperglycemia through oxidative stress inhibition, inflammatory reaction reduction, and PKCβ1 protein level repression, suggesting its perspective clinical usage.


2012 ◽  
Vol 5 (4) ◽  
pp. 192-200 ◽  
Author(s):  
Vivek Kumar Dwivedi ◽  
Anuj Bhatanagar ◽  
Manu Chaudhary

ABSTRACT We investigated the protective role of ceftriaxone plus sulbactam with VRP1034 (Elores) on hematological, lipid peroxidation, antioxidant enzymatic activities and Cd levels in the blood and tissues of cadmium exposed rats. Twenty-four male rats were divided into three groups of eight rats each. The control group received distilled water whereas group II received CdCl2 (1.5 mg/4 ml/body weight) through gastric gavage for 21 days. Group III received CdCl2 and was treated with ceftriaxone plus sulbactam with VRP1034 for 21 days. The hematological, biochemical, lipid per-oxidation levels and enzymatic parameters were measured in plasma and tissues (brain, liver and kidney) of all groups. The Cd, Zn and Fe levels were measured in blood and tissues of all groups. Our findings showed significantly decreased cadmium (p<0.001), malonaldialdehyde (p<0.001) and myloperoxidase (MPO) levels along with significantly increased hemoglobin (p<0.01), RBC (p<0.05), hematocrit (p<0.05) levels and all antioxidant enzymatic activities (SOD, CAT, GR, GPx) in plasma and tissues of ceftriaxone plus sulbactam with VRP1034 treated group as compared to cadmium exposed group. Delta aminolevulinate dehydratase (δ-ALAD) activity was significantly (p<0.001) increased in the blood of ceftriaxone plus sulbactam with VRP1034 treated group as compared with cadmium exposed group. The levels of hepatic and renal parameters were significantly (p<0.001) decreased in ceftriaxone plus sulbactam with VRP1034 treated group as compared to cadmium exposed group. These findings indicate that ceftriaxone plus sulbactam with VRP1034 acts as a potent free radical scavenger and exhibits metal chelating properties that reduce free radical mediated tissue injury and prevent dysfunction of hepatic and renal organs during metal intoxication.


Author(s):  
Nahed A Hussien ◽  
Hanan R. H. Mohamed

Objective: Cobalt nanoparticles (NPs), especially cobalt oxide NPs (Co3O4 NPs) are attracting unique shaped NPs that are used in different biomedical applications and medicine. Different in vitro studies report their toxic and carcinogenic effect but limited in vivo studies were present on its genotoxic potential. The present study was aimed to evaluate the genotoxic potential of Co3O4 NPs on bone marrow cells and sperms and the protective role of omega-3 in male albino mice.Methods: Animals were segregated into four groups that were orally treated for 3 consecutive days, Group 1: Negative control; Group 2: Omega-3 (250 mg/kg); Group 3: Co3O4 NPs (20 mg/kg); and Group 4: Combined group (250 mg/kg Omega-3 and Co3O4 NPs 20 mg/kg).Results: The present results show that Co3O4 NPs administration significantly increased number of micronucleated polychromatic erythrocytes (PCEs)/1000 PCEs, sperm abnormalities, and DNA damage, significantly decreased sperm motility and concentration in comparison to negative control group. However, Omega-3 administration in the combined group modulates the genotoxic potential of Co3O4 NPs in comparison to Co3O4 NPs group.Conclusion: The present study reports the genotoxic potential of Co3O4 NPs in vivo and assesses the protective role of Omega-3 administration due to its antioxidant effect.


2014 ◽  
Vol 962-965 ◽  
pp. 1231-1234
Author(s):  
Hui Huang ◽  
Bo Qi

The objective of this study was to investigate the protective role of polysaccharide fromGynostemma pentaphyllumMakino (PGP) supplementation against exhaustive swimming exercise-induced oxidative stress. A total of 48 mice were randomly divided into four groups: control, low-dose, medium-dose, and high-dose PGP supplementation groups. The control group received distilled water and the supplementation groups received different doses of PGP (50, 100 and 200 mg/kg body weight) by gavage once a day for 28 consecutive days. After 28 days, the mice performed an exhaustive swimming exercise, and some biochemical parameters related to oxidative stress, including superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and malondialdehyde (MDA), were measured. The results showed that PGP supplementation could increase SOD, GPx and CAT contents, as well as decrease MDA contents in the liver and skeletal muscle of mice, which suggests that PGP supplementation has a protective role against exhaustive swimming exercise-induced oxidative stress.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10662
Author(s):  
Tiranan Buddawong ◽  
Somluk Asuvapongpatana ◽  
Chanyatip Suwannasing ◽  
Valainipha Habuddha ◽  
Chompoonut Sukonset ◽  
...  

Abalone shells are mainly composed of two major polymorphs of CaCO3 that are distributed in different layers of the shell. The process of shell biomineralization is controlled by genes and proteins expressed within the mantle epithelium. In this present paper, we conducted a shell regeneration experiment to study the role of HcCNA and HcCNB (individual subunits of calcineurin) in shell biomineralization in H. diversicolor. The results of qPCR showed that HcCNB is upregulated to a greater extent than HcCNA in the mantle after shell notching. In vivo study of the effects of rHcCNB injection showed a significantly higher percentage of regenerated shell length, but not area, in the injected group compared to the control group. In addition, SEM observation of the inner surface of the regenerated shells revealed three different zones including prismatic, nacreous, and a distinct transition zone. Changes in the crystal organization and ultrastructure are clearly evident in these three zones, particularly after 3 weeks of rHcCNB administration. We hypothesize that this is due to faster biomineralization rates in the rHcCNB treated group. Taken together, our results demonstrate that HcCNB participates in shell regeneration in H. diversicolor. As calcineurin subunits have also been implicated in shell formation in bivalves, these findings suggest that calcineurin subunits may play important roles in biomineralization in all conchiferans.


Sign in / Sign up

Export Citation Format

Share Document