scholarly journals Silver Fir Defoliation Likelihood Is Related to Negative Growth Trends and High Warming Sensitivity at Their Southernmost Distribution Limit

ISRN Forestry ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Juan Carlos Linares ◽  
J. Julio Camarero

Changes in radial growth have been used to estimate tree decline probability since they may indicate tree responses to long- and short-term stressors. We used visual assessments of crown defoliation, an indicator of decline, and retrospective tree-ring analyses to determine whether climate-growth sensitivity and tree growth rates may be used as predictors of tree die-off probability in Abies alba (silver fir) at the Spanish Pyrenees. We used climatic data to calculate standardized temperature and precipitation data and drought indexes. Basal area increment was measured for declining (defoliation > 50%) and nondeclining (defoliation < 50%) silver firs in stands with contrasting defoliation. Logistic regressions were applied to predict tree die-off. Since the early 1980s, a synchronised reduction in basal area increment was observed in declining trees. The basal area increment trend correctly classified 64% of declining trees and 94% of nondeclining trees. The growth sensitivity to water deficit, temperature, and a drought index also significantly predicted silver fir decline, but providing underestimated predictions. Our findings underscore the idea that long-term climatic warming seems to be a major driver of growth decline in silver fir. Ongoing growth reduction and enhanced mortality may promote vegetation shifts in declining Pyrenean A. alba forests.

2008 ◽  
Vol 159 (10) ◽  
pp. 352-361 ◽  
Author(s):  
Andreas Zingg ◽  
Anton Bürgi

Drought during the vegetation period has en effect on tree growth. Using daily precipitation data and growth records from long-term research plots, we investigated what can be defined as “drought” and how strong its effect is. Dry or humid periods are defined as the deviation from the long-term daily mean of precipitation. Such periods must last at least 60 days to be considered as being decisive for tree growth. The drought values are used together with other site and stand parameters as explaining variables in a model for the basal area increment for Norway spruce (Picea abies [L] H. Karst.), silver fir (Abies alba Mill.), European beech (Fagus sylvatica L.) and oak (Quercus L), based on data from long-term growth and yield plots which are located in the neighbourhood of precipitation measurement stations. These models explain 55 to 89% of the variance. In drought situations basal area increment drops clearly for spruce and beech, for fir only weakly and oak shows no reaction. Furthermore, we checked if there happened additional or compulsory felling after drought periods and if the basal area growth changed significantly compared to the growth in the period before. For both it is not the case, despite distinct drought periods in the last century, especially in the 40s with the extreme year of 1947. Therefore we do not expect dramatic changes for the investigated species in similar drought situations under the prerequisite that the other conditions do not change essentially.


2015 ◽  
Vol 45 (11) ◽  
pp. 1577-1586 ◽  
Author(s):  
Michal Bosela ◽  
Brian Tobin ◽  
Vladimír Šebeň ◽  
Rudolf Petráš ◽  
Guy R. Larocque

The influence of forest ecology and strategic planning has increased in importance to support the management of mixed-species forests to enhance biodiversity. However, little is known about competitive and facilitative interactions between trees and species in mixed fir–beech–spruce forests, mostly because of a lack of long-term experimental research. In the 1960s, long-term sample plots were established in the Western Carpathians to develop region-specific yield models. Trees in the plots were measured at 5- to 16-year intervals from 1967(69). In 2010, the positions of standing trees in all plots were identified spatially. Stump positions were also identified to record the coordinates of trees that had been removed or had died. The objectives of this study were to evaluate the applicability of widely used competition indices for mature fir–beech–spruce mixed forests and to test whether the tree competition zone changes among species and forest stands of different stocking densities. Results showed that the best competition index was based on the comparison of the basal area of competitors and the subject tree in the radius, which was defined as a function of stand density and species. In addition, beech was found to be a strong self-competitor, which was not the case for silver fir (Abies alba Mill.). Results suggest that simpler competition indices are better suited for such diverse forests, as more complex indices do not describe the competition interactions sufficiently well.


2011 ◽  
Vol 72 (4) ◽  
pp. 357-366
Author(s):  
Maciej Pach ◽  
Michał Soberka

Zastosowanie retrospektywnego dynamicznego wskaźnika konkurencji do oceny oddziaływania drzew sąsiednich na przyrost pierśnicowego pola przekroju jodły (Abies albaMill.)


Author(s):  
J. Paluch ◽  
S. Keren ◽  
Z. Govedar

Abstract In this study, we analysed patterns of spatial variation in the basal area of live and dead trees and structural complexity in close-to-primeval forests in the Dinaric Mts. The results were compared with an analogous study conducted in the Western Carpathians. The research was carried out in the Janj, Lom and Perucića forest reserves (Bosnia and Herzegovina) in mixed-species stands of silver fir Abies alba Mill., European beech Fagus sylvatica L. and Norway spruce Picea abies (L.) H. Karst. In the core zones of the reserves, concentric sample plots (154 and 708 m2) were set in a regular 20 × 20 m grid covering approximately 10 ha. The analyses revealed varying distribution patterns of live canopy trees, suggesting that these characteristics may fluctuate to some extent at the regional level. At the spatial scale of 708 m2, attractive associations between dead canopy trees were found, but this tendency disappeared with increasing area. Although stands in the Dinaric Mts. are characterized by an almost twofold greater biomass accumulation compared to those from the Western Carpathians, the study revealed analogous bell-shaped distributions of stand basal areas of live trees and a very similar trend of decreasing variation in stand basal area and structural heterogeneity with increasing spatial scale. Nonetheless, the higher growing stocks, lower ratios of dead to live tree basal area and lower proportion of homogeneous structure types found in the Dinaric Mts. may suggest a less severe disturbance history over recent decades in this region compared to the Western Carpathians.


2020 ◽  
Vol 50 (7) ◽  
pp. 689-703 ◽  
Author(s):  
Hans Pretzsch ◽  
Torben Hilmers ◽  
Peter Biber ◽  
Admir Avdagić ◽  
Franz Binder ◽  
...  

In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 × 106 ha at elevations between ∼600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today’s growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.


Biologia ◽  
2008 ◽  
Vol 63 (1) ◽  
Author(s):  
Marilena Idžojtić ◽  
Renata Pernar ◽  
Milan Glavaš ◽  
Marko Zebec ◽  
Danko Diminić

AbstractThe research on incidence of mistletoe (Viscum album ssp. abietis) on silver fir (Abies alba) was carried out in natural fir stands in Croatia. In the area of Gorski Kotar 32.8 % of the examined dominant fir trees were infected with mistletoe. The mistletoe incidence was presented according to the damage degrees of silver fir from 0 (healthy trees) to 4 (dead trees), rated by the crown defoliation and needle discoloration. With the increase of incidence, mistletoe spreads more onto more vital, i.e. less damaged trees. In the Dinaric Alps 28.6% of the examined fir trees were infected, this percentage amounting to 27.1% for the mountainous regions between the Sava and Drava rivers.The site and stand parameters (exposure, elevation, site quality, forest community and crown closure) were analysed in order to establish whether there was a correlation between these parameters and mistletoe incidence. There was a negative correlation between the elevation and mistletoe incidence. Among the compartments with a closed stands there were considerably less compartments with higher mistletoe incidence than among compartments with a sparsely closed and understocked stands. The other analysed site and stand parameters individually had no significant influence on mistletoe incidence.The correlation of silver fir mortality in 2004 and mistletoe incidence in 2002/03 was analysed, and their strong correlation was established. Mistletoe could be considered as a bioindicator of silver fir decline, and probably a significant contributor to that decline. In the areas where mistletoe incidence is great it can be presumed that silver fir is significantly damaged.


2015 ◽  
Vol 166 (6) ◽  
pp. 361-371 ◽  
Author(s):  
Sabine Braun ◽  
Jan Remund ◽  
Beat Rihm

Indicators for quantitative assessment of drought risks in beech and Norway spruce forests The application of climate models to forecast future forest development asks for quantitative drought-response relationships, with the term “drought” first needing a definition. The long-term data series of an intercantonal forest observation program allowed to test various drought indicators, to compare them and to derive quantitative relationships for beech and Norway spruce. For basal area increment of both tree species indicators of the site water balance (SWB) performed best. For beech mortality site water balance and several indicators basing on the ratio between actual and potential evapo-transpiration (ETa/ETp) were equivalent, whereas for spruce mortality ETa/ETp during the first 80 days of the season was the best indicator. With these indicators the average drought related growth reduction after 2003 – a year with extreme drought – was estimated to amount to 32% for beech and 37% for Norway spruce. Mortality of Norway spruce increased by 130%, whereas the estimates for the increase of beech mortality vary between 54 and 110%, depending on the indicator. The observed quantitative relationships for growth were applied to map drought responses of growth for Switzerland. The maps clearly show the dry regions of Switzerland (northern Switzerland, southern Jura foothills, Lemanic region, Valais and Rhine valley around Chur), where basal area increment of beech and Norway spruce was reduced by more than 40%.


2009 ◽  
Vol 39 (12) ◽  
pp. 2437-2449 ◽  
Author(s):  
Klaus J. Puettmann ◽  
Anthony W. D’Amato ◽  
Ulrich Kohnle ◽  
Jürgen Bauhus

This study investigated the individual-tree diameter response of mature silver fir ( Abies alba Mill.) to reproduction harvests (Femelschlag: an irregular group shelterwood method) on six sites in the Black Forest, Germany. On each site, four different treatments were applied, including a control treatment and short-, medium, and long-term regeneration periods aimed at the complete removal of overstory trees within 20, 35, and 50 years, respectively. These treatments created a wide variety of growing conditions for individual trees. Relationships between relative diameter growth and stand-level and neighborhood interaction indices were evaluated. Growing conditions for individual trees in control conditions were best characterized using Lorimer’s index for a 16 m radius neighborhood. Equations predicting tree growth in control stands underpredicted initial growth of trees after harvesting operations, suggesting a release effect that is not captured by postharvest density. This effect was larger for smaller trees and influenced by removal intensity. Growth response to density reductions was also influenced by previous harvests. Our results suggest that the growth response of mature trees to reproduction harvests may become an important consideration when increased emphasis is placed on managing for long-term regeneration periods.


2005 ◽  
Vol 35 (6) ◽  
pp. 1285-1293 ◽  
Author(s):  
Jianwei Zhang ◽  
William W Oliver ◽  
Robert F Powers

To determine the impact of fertilization and thinning on growth and development of red fir (Abies magnifica A. Murr.) stands, we established an experiment in a 60-year-old stand using a 2 × 3 factorial design with nitrogen-fertilized and nonfertilized treatments and three stocking levels. Plots were established in 1976 and were measured every 5 years for 26 years. The periodic annual increment in basal area was 97%, 51%, 38%, and 33% greater in fertilized trees than in nonfertilized trees during the first, second, third, and fourth 5-year periods, respectively. After 20 years, annual basal area increment was greater in nonfertilized trees. The response of annual volume increment to fertilization was not statistically significant until the fourth period. Yet, volume increases of the fertilized plots were 25%–92% greater than those of the nonfertilized plots from 1976 to 1996. Similarly, basal area increment was greater in lightly thinned plots than in unthinned plots from the second period on, until heavy mortality during 1996–2002. Basal area increment was greater in the heavily thinned plots from the fourth period on. Results indicate that red fir can respond to fertilization and thinning quickly and that both treatments speed stand development. In addition, fertilization increases the stand's carrying capacity. Therefore, forest managers can use these silvicultural practices to improve stand growth, to reduce fire fuels, and to accelerate stand development.


Sign in / Sign up

Export Citation Format

Share Document