scholarly journals Optimizing wheat seed treatment with entomopathogenic fungi for improving plant growth at early development stages

2021 ◽  
Vol 19 (4) ◽  
pp. e1004-e1004
Author(s):  
Adrian Gonzalez-Guzman ◽  

Aim of study: Entomopathogenic fungi (EPF) are biocontrol agents, plant growth promoters, and increase tolerance to biotic-abiotic stresses. In this study we investigated the factors associated to the application method, which are crucial for the interaction between the fungus and the host plant at initial crop growth stages. Area of study: The study was performed in Cordoba (Spain) Material and methods: Three experiments were performed to investigate: (i) the effect of different concentrations of the surfactant Tween® 80 (0, 0.5, 1, 5, and 10%) on wheat seed coating with conidia of Metarhizium brunneum and seed and conidia viability; (ii) the performance of wheat seedlings at first growth stages after their inoculation with Beauveria bassiana or M. brunneum via seed coating or soil drenching; and (iii) the role of soil sterilization and seed disinfection on leaf concentration of chlorophyll (SPAD) and B. bassiana or M. brunneum colonization. Main results: Tween® 80 concentration linearly improved seed coating (up to 127%) without altering wheat seeds and fungal conidia germination. Seedling length of inoculated plants was significantly increased with B. bassiana and M. brunneum (67% and 46%, respectively) via seed coating. Seed disinfection was key to achieve an enhancement in wheat SPAD (10-18%) with B. bassiana or M. brunneum concerning Control, that combined with sterilization of soil showed the highest endophyte colonization rates (up to 83.3% with both fungi) Research highlights: The surfactant concentration, application method, seed disinfection, and soil sterilization are key parameters to improve the potential benefits on the EPF-plant relationship.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1026 ◽  
Author(s):  
Laís G. Fregolente ◽  
João Vitor dos Santos ◽  
Giovanni Vinci ◽  
Alessandro Piccolo ◽  
Altair B. Moreira ◽  
...  

Hydrochar is a carbon-based material that can be used as soil amendment. Since the physical-chemical properties of hydrochar are mainly assigned to process parameters, we aimed at evaluating the organic fraction of different hydrochars through 13C-NMR and off-line TMAH-GC/MS. Four hydrochars produced with sugarcane bagasse, vinasse and sulfuric or phosphoric acids were analyzed to elucidate the main molecular features. Germination and initial growth of maize seedlings were assessed using hydrochar water-soluble fraction to evaluate their potential use as growth promoters. The hydrochars prepared with phosphoric acid showed larger amounts of bioavailable lignin-derived structures. Although no differences were shown about the percentage of maize seeds germination, the hydrochar produced with phosphoric acid promoted a better seedling growth. For this sample, the greatest relative percentage of benzene derivatives and phenolic compounds were associated to hormone-like effects, responsible for stimulating shoot and root elongation. The reactions parameters proved to be determinant for the organic composition of hydrochar, exerting a strict influence on molecular features and plant growth response.


Author(s):  
Diana Pacheco ◽  
João Cotas ◽  
Carolina P. Rocha ◽  
Glacio S. Araújo ◽  
Artur Figueirinha ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 222
Author(s):  
Abdulaziz A. Al-Askar ◽  
WesamEldin I. A. Saber ◽  
Khalid M. Ghoneem ◽  
Elsayed E. Hafez ◽  
Amira A. Ibrahim

Presently, the bioprocessing of agricultural residues to various bioactive compounds is of great concern, with the potential to be used as plant growth promoters and as a reductive of various diseases. Lycopersiconesculentum, one of the most consumed crops in the human diet, is attacked by Fusarium wilt disease, so the main aim is to biocontrol the pathogen. Several fungal species were isolated from decayed maize stover (MS). Trichodermaasperellum was chosen based on its organic acid productivity and was molecularly identified (GenBank accession number is MW195019). Citric acid (CA) was the major detected organic acid by HPLC. In vitro, CA of T.asperellum at 75% completely repressed the growth of Fusariumoxysporum f. sp. lycopersici (FOL). In vivo, soaking tomato seeds in CA enhanced the seed germination and vigor index. T. asperellum and/or its CA suppressed the wilt disease caused by FOL compared to control. There was a proportional increment of plant growth and yield, as well as improvements in the biochemical parameters (chlorophyll pigments, total phenolic contents and peroxidase, and polyphenol oxidase activities), suggesting targeting both the bioconversion of MS into CA and biological control of FOL.


2021 ◽  
Vol 13 (6) ◽  
pp. 3569
Author(s):  
Hua Cheng ◽  
Baocheng Jin ◽  
Kai Luo ◽  
Jiuying Pei ◽  
Xueli Zhang ◽  
...  

Quantitatively estimating the grazing intensity (GI) effects on vegetation in semiarid hilly grassland of the Loess Plateau can help to develop safe utilization levels for natural grasslands, which is a necessity of maintaining livestock production and sustainable development of grasslands. Normalized difference vegetation index (NDVI), field vegetation data, and 181 days (one goat per day) of GPS tracking were combined to quantify the spatial pattern of GI, and its effects on the vegetation community structure. The spatial distribution of GI was uneven, with a mean value of 0.50 goats/ha, and 95% of the study area had less than 1.30 goats/ha. The areas with utilization rates of rangeland (July) lower than 45% and 20% made up about 95% and 60% of the study area, respectively. Grazing significantly reduced monthly aboveground biomass, but the grazing effects on plant growth rate were complex across the different plant growth stages. Grazing impaired plant growth in general, but the intermediate GI appeared to facilitate plant growth rate at the end of the growing seasons. Grazing had minimal relationship with vegetation community structure characteristics, though Importance Value of forbs increased with increasing GI. Flexibility in the number of goats and conservatively defining utilization rate, according to the inter-annual variation of utilization biomass, would be beneficial to achieve ecologically healthy and economically sustainable GI.


2021 ◽  
Vol 13 (14) ◽  
pp. 8030
Author(s):  
Shehzad Mehmood ◽  
Amir Abdullah Khan ◽  
Fuchen Shi ◽  
Muhammad Tahir ◽  
Tariq Sultan ◽  
...  

Plant growth-promoting rhizobacteria play a substantial role in plant growth and development under biotic and abiotic stress conditions. However, understanding about the functional role of rhizobacterial strains for wheat growth under salt stress remains largely unknown. Here we investigated the antagonistic bacterial strain Bacillus aryabhattai PM34 inhabiting ACC deaminase and exopolysaccharide producing ability to ameliorate salinity stress in wheat seedlings under in vitro conditions. The strain PM34 was isolated from the potato rhizosphere and screened for different PGP traits comprising nitrogen fixation, potassium, zinc solubilization, indole acetic acid, siderophore, and ammonia production, along with various extracellular enzyme activities. The strain PM34 showed significant tolerance towards both abiotic stresses including salt stress (NaCl 2 M), heavy metal (nickel, 100 ppm, and cadmium, 300 ppm), heat stress (60 °C), and biotic stress through mycelial inhibition of Rhizoctonia solani (43%) and Fusarium solani (41%). The PCR detection of ituC, nifH, and acds genes coding for iturin, nitrogenase, and ACC deaminase enzyme indicated the potential of strain PM34 for plant growth promotion and stress tolerance. In the in vitro experiment, NaCl (2 M) decreased the wheat growth while the inoculation of strain PM34 enhanced the germination% (48%), root length (76%), shoot length (75%), fresh biomass (79%), and dry biomass (87%) over to un-inoculated control under 2M NaCl level. The results of experiments depicted the ability of antagonistic bacterial strain Bacillus aryabhattai PM34 to augment salt stress tolerance when inoculated to wheat plants under saline environment.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 268
Author(s):  
Pedro Miranda-Fuentes ◽  
Ana B. García-Carneros ◽  
Leire Molinero-Ruiz

The management of downy mildew (Plasmopara halstedii) in sunflower, is heavily dependent on genetic resistance, whilst entomopathogenic fungi (EF) can reduce other sunflower diseases. In this work, we characterized P. halstedii from Spain and other countries collected in the past few years. Twenty-three races were identified (the most frequent in Spain being 310, 304, 705 and 715), with an increasing proportion of highly virulent races. Five isolates from countries other than Spain overcame the resistance in RHA-340. In addition, we assessed the efficacy of five EF against downy mildew and their effects on sunflower growth in axenic conditions. None of the entomopathogens reduced disease severity, nor did they have any effect on plant growth when applied together with P. halstedii. In contrast, three EF reduced some of the plant growth variables in the absence of the pathogen. Microbiological and molecular diagnostics suggest that the axenic system and the short experimental time used in this study did not favor the successful establishment of EF in the plants or their potential biocontrol effect. Our results show a shift in P. halstedii racial patterns and suggest that soil as a growth substrate and long infection times are needed for EF effectiveness against downy mildew.


2016 ◽  
Vol 186-187 ◽  
pp. 37-43 ◽  
Author(s):  
Silvana Díaz Herrera ◽  
Cecilia Grossi ◽  
Myriam Zawoznik ◽  
María Daniela Groppa

Sign in / Sign up

Export Citation Format

Share Document