scholarly journals Numerical simulation of storm surge associated with severe cyclonic storms in the Bay of Bengal during 2008-11

MAUSAM ◽  
2022 ◽  
Vol 64 (1) ◽  
pp. 193-202
Author(s):  
S.K. DUBE ◽  
JISMY POULOSE ◽  
A.D. ADRAO

tc Hkh m".kdfVca/kh; pØokr vkrk gS rc Hkkjr vkSj blds fudVorhZ {ks=ksa esa rwQkuh leqnzh rjaxksa dh vkinkvksa ds dkj.k tku vkSj eky dh Hkkjh gkfu] rVh; <k¡pksa dh {kfr vkSj —f"k dks gkfu igq¡prh gSA uoEcj 1970 esa caxykns’k ¼igys iwohZ ikfdLrku½ esa vk, ,d vR;ar iapaM pØokr dh otg ls yxHkx 3]00]000 yksxksa dh tkus xbZaA uoEcj 1977 esa vkU/kz esa vk, pØokr us Hkkjr ds iwohZ rV dks rgl ugl dj fn;k ftlesa yxHkx 10]000 yksxksa dh tkus xbZaA vDrwcj 1999 esa Hkkjr ds mM+hlk ds rV ij ,d izpaM pØokrh rwQku vk;k ftlls ml {ks= esa laifRr dh vR;kf/kd gkfu gksus ds vfrfjDr 15]000 ls Hkh vf/kd yksxksa dh tkus xbZaA gky gh esa ebZ 2008 esa vk, pØokr uxhZl ls E;kaekj esa yxHk.k 1]40]000 yksxksa dh tkusa xbZa vkSj laifRr dk vR;f/kd ek=k esa uqdlku gqvkA ;s fo’o dh lcls cM+h ekuoh; vkink;sa eq[;r% m".kdfVca/kh; pØokrksa ls lac) gaS o leqnzh rwQkuh rjaxksa ls izR;{k:i  ls tqMh gSA vr% ml {ks= esa laf{kIr iwokZuqeku vkSj leqnzh rwQkuh rjaxksa dh iwoZ psrkouh nsus dk izko/kku ml {ks= ds fgr esa gksrk gSA bl 'kks/k i= dk eq[; mÌs’; caxky dh [kkM+h vkSj vjc lkxj esa mBus okyh leqnzh rwQkuh rjaxksa dk iwokZuqeku djus ds fy, gky gh esa fodflr fd, x, ekWMyksa dks izdk’k esa ykuk gSA bl 'kks/k&i= esa o"kZ 2008 ls 2011 ds nkSjku caxky dh [kkM+h esa cus izpaM pØokrksa ls tqM+h leqnzh rjaxksa dk iwokZuqeku [email protected] djus esa fun’kZ ds fu"iknu dk Hkh mYys[k fd;k x;k gSA Storm surge disasters cause heavy loss of life and property, damage to the coastal structures and the losses of agriculture in India and its neighborhood whenever a tropical cyclone approaches. About 3,00,000 lives were lost in one of the most severe cyclone that hit Bangladesh (then East Pakistan) in November 1970. The Andhra Cyclone devastated the eastern coast of India, killing about 10,000 persons in November 1977. Orissa coast of India was struck by a severe cyclonic storm in October 1999, killing more than 15000 people besides enormous loss to the property in the region. More recently the Nargis cyclone of May 2008 killed about 1,40,000 people in Myanmar as well as caused enormous property damage. These and most of the world's greatest human disasters associated with the tropical cyclones have been directly attributed to storm surges. Thus, provision of precise prediction and warning of storm surges is of great interest in the region. The main objective of the present paper is to highlight the recent developments in storm surge prediction model for the Bay of Bengal and the Arabian Sea. Paper also describes the performance of the model in forecasting/simulating the surges associated with severe cyclones formed in the Bay of Bengal during 2008 to 2011.  

2016 ◽  
Vol 81 (3) ◽  
pp. 1771-1795 ◽  
Author(s):  
Raghu Nadimpalli ◽  
Krishna K. Osuri ◽  
Sujata Pattanayak ◽  
U. C. Mohanty ◽  
M. M. Nageswararao ◽  
...  

APAC 2019 ◽  
2019 ◽  
pp. 1319-1326
Author(s):  
D. P. C. Laknath ◽  
K. A. H. S. Sewwandi ◽  
H. Hailong

2014 ◽  
Vol 1 (34) ◽  
pp. 26
Author(s):  
Khandker Masuma Tasnim ◽  
Ohira Koichiro ◽  
Tomoya Shibayama ◽  
Miguel Esteban ◽  
Ryota Nakamura

Author(s):  
Ajit Tyagi ◽  
M. Mohapatra ◽  
B. K. Bandyopadhyay ◽  
Charan Singh ◽  
Naresh Kumar

2014 ◽  
Vol 71 (5) ◽  
Author(s):  
N. S. Sabarudin ◽  
M. L. R. Sarker

Monitoring ocean primary productivity especially Chlorophyll-a (Chl-a) concentration is important as it contributes to the carbon cycle, global climate change and ocean health study.  This study aims to examine the effects of cyclone events on the ocean productivity in the Bay of Bengal (BOB) considering its importance on global climate change.  Level 2 SeaWiFS daily data from 2001 to 2010 were used to determine Chl-a concentration and data from the Indian Meteorological Department (IMD) were used to get information and locations of the cyclone events.  Variation of Chl-a concentration was determined from the Chl-a concentration maps (pre-, during, and post-cyclone) using several transect lines parallel to the cyclone passages.  Results indicated that there is a relationship between the variation of Chl-a concentration and the cyclone events at the BOB but the effect is varied according to the type of cyclone where very severe cyclonic storm (VSCS) has higher impact on Chl-a concentration compared to cyclonic storm (CS) and severe cyclonic storm (SCS).  In most cases, Chl-a concentration was increased right after the cyclone event and the influence was observed over a wide area surrounding the cyclone passage.Monitoring ocean primary productivity especially Chlorophyll-a (Chl-a) concentration is important as it contributes to the carbon cycle, global climate change and ocean health study.  This study aims to examine the effects of cyclone events on the ocean productivity in the Bay of Bengal (BOB) considering its importance on global climate change.  Level 2 SeaWiFS daily data from 2001 to 2010 were used to determine Chl-a concentration and data from the Indian Meteorological Department (IMD) were used to get information and locations of the cyclone events.  Variation of Chl-a concentration was determined from the Chl-a concentration maps (pre-, during, and post-cyclone) using several transect lines parallel to the cyclone passages.  Results indicated that there is a relationship between the variation of Chl-a concentration and the cyclone events at the BOB but the effect is varied according to the type of cyclone where very severe cyclonic storm (VSCS) has higher impact on Chl-a concentration compared to cyclonic storm (CS) and severe cyclonic storm (SCS).  In most cases, Chl-a concentration was increased right after the cyclone event and the influence was observed over a wide area surrounding the cyclone passage.Monitoring ocean primary productivity especially Chlorophyll-a (Chl-a) concentration is important as it contributes to the carbon cycle, global climate change and ocean health study.  This study aims to examine the effects of cyclone events on the ocean productivity in the Bay of Bengal (BOB) considering its importance on global climate change.  Level 2 SeaWiFS daily data from 2001 to 2010 were used to determine Chl-a concentration and data from the Indian Meteorological Department (IMD) were used to get information and locations of the cyclone events.  Variation of Chl-a concentration was determined from the Chl-a concentration maps (pre-, during, and post-cyclone) using several transect lines parallel to the cyclone passages.  Results indicated that there is a relationship between the variation of Chl-a concentration and the cyclone events at the BOB but the effect is varied according to the type of cyclone where very severe cyclonic storm (VSCS) has higher impact on Chl-a concentration compared to cyclonic storm (CS) and severe cyclonic storm (SCS).  In most cases, Chl-a concentration was increased right after the cyclone event and the influence was observed over a wide area surrounding the cyclone passage.


MAUSAM ◽  
2021 ◽  
Vol 60 (3) ◽  
pp. 289-294
Author(s):  
MOHAMMAD ABDULLAH – AL MOKIM ◽  
SUJIT KUMAR DEBSARMA ◽  
SULTANA SHAFEE

This paper describes the basic features of storm surge phenomena using Indian Institute of Technology (IIT) model (installed at Bangladesh Meteorological Department) for the Bay of Bengal. To capture the storm surge scenarios, after the entrance of the cyclone into the northern part of the Bay of Bengal, high resolution IIT model has been used. The analysis area is from 18° N to 23° N and 83.5° E to 94.5° E. Bathymetric data required for the model has been taken from Royal Admiralty Table and ETOPO2 dataset.  In this paper, various scenarios of storm surges are developed and then investigated for varying input parameter values. This paper also examines the time-series of surges at the fixed landfall point by using the data of three severe cyclonic storms when the cyclone approaches the landfall point.


2021 ◽  
Vol 247 ◽  
pp. 105222
Author(s):  
Vivek Singh ◽  
Rakesh Teja Konduru ◽  
Atul Kumar Srivastava ◽  
I.M. Momin ◽  
Sushant Kumar ◽  
...  

MAUSAM ◽  
2022 ◽  
Vol 64 (1) ◽  
pp. 105-116
Author(s):  
T.N. TNJHA ◽  
M. MOHAPATRA ◽  
B.K. BANDYOPADHYAY

caxky dh [kkM+h esa o"kZ 2008&2010 esa ,Q- Mh- ih- vof/k ¼15 vDrwcj ls 30 uoEcj½ ds nkSjku vk, ik¡p pØokrksa ds lw{e rjaxh; es?k fcEckofy;ksa rFkk 85 fxxkgV~tZ vko`fÙk esa izkIr fd, x, mRiknksa dh tk¡p dh xbZ gS ftlls rkieku nhfIr] rkieku nhfIr esa vfu;ferrk] dsUnz dk LFkku] lrg ij vuojr cgus okyk vf/kdre iou ¼,e- ,l- MCY;w-½ rFkk  pØokrksa ds fHkUu&fHkUu fLFkfr;ksa esa muds rhozhdj.k ls lacaf/kr  djdksa tSls% vonkc ¼Mh-½] xgu vonkc ¼Mh- Mh-½] pØokrh; rwQku ¼lh- ,l-½] rhoz pØokrh; rwQku ¼,l-lh-,l-½] vfr rhoz pØokrh; rwQku ¼oh-,l-lh-,l-½ vkfn dk vkdfyr dsUnzh; nkc ¼bZ- lh- ih-½ dk vkdyu fd;k tk ldsA izf{kr fd, x, nhfIr rkieku vfu;ferrkvksa dh rqyuk lS)kafrd :i ls bZ-lh-ih- ds csLV VªSd vkdyu ij vk/kkfjr  nhfIr rkieku vfu;ferrk ,oa bu pØokrksa ds ckgjh nkc ds lkFk Hkh dh xbZ gSA dsUnz ds LFkku] bZ-lh-ih- ,oa lw{erajxh; fcEckoyh ds vk/kkj ij vkdfyr ,e- ,l- MCY;w- dh rqyuk csLV VªSd ,oa Hkkjr ekSle foKku foHkkx ds Mh- oksjkWd  ds vkdyu ls dh xbZ gS vkSj mldk fo’ys"k.k fd;k x;k gSA   pØokrh; fo{kksHk ¼lh- Mh-½ ds dsUnz ds LFkku esa varZ tSlkfd lw{erjaxh fcEckofy;ksa rFkk csLV VªSd vkdyu ds }kjk vkdfyr fd;k x;k gS] fo{kksHkksa ds rhozhdj.k ds lkFk&lkFk de gksrk tkrk gS vkSj vonkc ¼Mh-½ dh fLFkfr esa yxHkx 25 fd-eh- ls vfr rhoz pØokrh; rwQku ¼oh-,l-lh-,l-½ dh fLFkfr esa 18 fd- eh ds chp cnyrk jgrk gSA tcfd ;g varj Mh oksjkWd  ds vkdyu ls dkQh vf/kd gSA lw{erjaxh; vkdyuksa ij vk/kkfjr ,e- ,l- MCY;w- vkdyu oh-,l- lh- ,l- ds nkSjku csLV VªSd vkdyuksa ls yxHkx 28 ukWV~l vf/kd vkdfyr fd;k x;k gS vkSj vonkc ¼Mh-½@pØokrh; rwQku ¼lh-,l-½@rhoz pØokrh; rwQku ¼,l- lh- ,l-½ dh fLFkfr esa ;g 6&8 ukWV~l vkdfyr fd;k x;k gSA csLV VSªd vkdyuksa ls lkisf{kd varj dks ns[kus ls irk pyk gS fd lh-,l- vkSj ,l-lh- dh fLFkfr esa lw{e rajx esa ,e-,l-MCY;w- yxHkx 12&15 izfr’kr vkSj oh-,l-lh-,l- dh fLFkfr esa yxHkx 30 izfr’kr vf/kd vkdfyr gqvk gS tcfd Mh- oksjkWd dk ,e- ,l- MCY;w- vkdyu lh- ,l-] ,l- lh- ,l- vkSj oh- ,l- lh- ,l- dh fLFkfr;ksa esa 15&18 izfr’kr de gks x;k gSA caxky dh [kkM+h ds Åij 230 dsfYou dk nhfIr rkieku vonkc ds cuus ds fy, vuqdwy gksrk gS] 250 dsfYou dk rkieku bldks pØokrh rwQku esa 260 dsfYou rhoz pØokrh rwQku esa vkSj 270 dsfYou vfr izpaM+ pØokrh rwQku esa cny nsrk gSA nhfIr rkieku ds nsgyheku ¼FkszlksYM osY;w½ ds vfHkKku ¼fMVSD’ku½ ls bl iz.kkyh ds rhoz gksus dk iwokZuqeku nsus ds fy, iz;kIr vfxze le; fey ldrk gSA blh izdkj nhfIr rkieku folaxfr 3 dsfYou ls vf/kd gksus ij pØokrh; rwQku rhoz  pØokrh; rwQku esa cny tkrk gS vkSj 8 dsfYou dk rkieku bls caxky dh [kkM+h esa vfr izpaM pØokrh; rwQku ds :i esa cny nsrk gSA Microwave cloud imageries and derived products in the frequency of 85 GHz have been examined for five cyclones that occurred during FDP period (15 October- 30 November) of 2008-2010 over the Bay of Bengal to estimate the brightness temperature, brightness temperature anomaly, location of centre, maximum sustained wind (MSW) at surface level and estimated central pressure (ECP) associated with cyclones in their different stages of intensification like depression (D), deep depression (DD), cyclonic storm (CS), severe cyclonic storm (SCS), very severe cyclonic storm (VSCS), etc. Also the observed brightness temperature anomalies are compared with theoretically derived brightness temperature anomalies based on the best track estimates of ECP and outermost pressure for these cyclones.  The location of centre, ECP and MSW based on microwave imagery estimates have been compared with those available from the best track  and Dvorak’s estimates of India Meteorological Department and analyzed. The difference in location of the centre of cyclonic disturbance (CD) as estimated by microwave imageries and best track estimates decreases with intensification of the  disturbances and varies from about 25 km in depression (D) stage to 18 km in VSCS stage whereas the difference is significantly higher in case of Dvorak estimate compared to best track estimate. The MSW based on microwave estimates is higher than that of best track estimates by about 28 knots during VSCS and 6-8 knots during D, CS, SCS stage. Considering relative difference with respect to best track estimates, the MSW is overestimated in microwave by about 12-15% in case of CS and SCS stage and by about 30% in VSCS stage while Dvorak’s MSW overestimation reduced to 15-18% during CS, SCS and VSCS stages. Brightness temperature of the order of 230 K is favourable for genesis (formation of D), 250K for its intensification into CS, 260 K for intensification into SCS and 270K for its further intensification into VSCS stage over the Bay of Bengal. Detection of threshold value of brightness temperature may provide adequate lead time to forecast intensification of the system. Similarly, when brightness temperature anomaly exceeds 3K, CS intensify into SCS and 8K, it intensifies into a VSCS over Bay of Bengal.


Sign in / Sign up

Export Citation Format

Share Document