dynamical model
Recently Published Documents


TOTAL DOCUMENTS

1826
(FIVE YEARS 267)

H-INDEX

70
(FIVE YEARS 9)

Author(s):  
F. Grassetti ◽  
C. Mammana ◽  
E. Michetti
Keyword(s):  

2022 ◽  
Vol 9 ◽  
Author(s):  
Kuo Wang ◽  
Gao-Feng Fan ◽  
Guo-Lin Feng

How to improve the subseasonal forecast skills of dynamic models has always been an important issue in atmospheric science and service. This study proposes a new dynamical-statistical forecast method and a stable components dynamic statistical forecast (STsDSF) for subseasonal outgoing long-wave radiation (OLR) over the tropical Pacific region in January-February from 2004 to 2008. Compared with 11 advanced multi-model ensemble (MME) daily forecasts, the STsDSF model was able to capture the change characteristics of OLR better when the lead time was beyond 30 days in 2005 and 2006. The average pattern correlation coefficients (PCC) of STsDSF are 0.24 and 0.16 in 2005 and 2006, while MME is 0.10 and 0.05, respectively. In addition, the average value of PCC of the STsDSF model in five years is higher than MME in 7–11 pentads. Although both the STsDSF model and MME show a similar temporal correlation coefficient (TCC) pattern over the tropical Pacific region, the STsDSF model error grows more slowly than the MME error during 8–12 pentads in January 2005. This phenomenon demonstrates that STsDSF can reduce dynamical model error in some situations. According to the comparison of subseasonal forecasts between STsDSF and MME in five years, STsDSF model skill depends strictly on the predictability of the dynamical model. The STsDSF model shows some advantages when the dynamical model could not forecast well above a certain level. In this study, the STsDSF model can be used as an effective reference for subseasonal forecast and could feasibly be used in real-time forecast business in the future.


2022 ◽  
Vol 2022 (1) ◽  
pp. 019901
Author(s):  
B De Bruyne ◽  
J Randon-Furling ◽  
S Redner

Abstract We introduce a minimalist dynamical model of wealth evolution and wealth sharing among N agents as a platform to compare the relative merits of altruism and individualism. In our model, the wealth of each agent independently evolves by diffusion. For a population of altruists, whenever any agent reaches zero wealth (that is, the agent goes bankrupt), the remaining wealth of the other N − 1 agents is equally shared among all. The population is collectively defined to be bankrupt when its total wealth falls below a specified small threshold value. For individualists, each time an agent goes bankrupt (s)he is considered to be ‘dead’ and no wealth redistribution occurs. We determine the evolution of wealth in these two societies. Altruism leads to more global median wealth at early times; eventually, however, the longest-lived individualists accumulate most of the wealth and are richer and more long lived than the altruists.


2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Lijun Pei ◽  
Chenyu Wang

In this paper, we consider the complex dynamics of a fiscal dynamical model, which was improved from Wolfstetter classical growth cycle model by Sportelli et al. The main work of the present paper is to study the impact of fiscal policy delays on the national income adjustment processes using a dynamical method, such as double Hopf bifurcation analysis. We first use DDE-BIFTOOL to find the double Hopf bifurcation points of the system, and draw the bifurcation diagrams with two bifurcation parameters, i.e. the tax collection delay [Formula: see text] and the public expenditure decision-making delay [Formula: see text]. Then we employ the method of multiple scales to obtain two amplitude equations. By analyzing these amplitude equations, we derive the classification and unfolding of these double Hopf bifurcation points. And three types of double Hopf bifurcations are found. Finally, we verify the results by numerical simulations. We find complex dynamic behaviors of the system via the analytical method, such as stable equilibrium, stable periodic, quasi-periodic and phase-locked solutions in respective regions. The dynamical phenomena can help policy makers to choose a proper range of the delays so that they could effectively formulate fiscal policies to stabilize the economy.


2021 ◽  
Vol 11 (24) ◽  
pp. 11945
Author(s):  
Khoi Phan Bui ◽  
Hong Nguyen Xuan

In this paper, the problem of controlling a human-like bipedal robot while walking is studied. The control method commonly applied when controlling robots in general and bipedal robots in particular, was based on a dynamical model. This led to the need to accurately define the dynamical model of the robot. The activities of bipedal robots to replace humans, serve humans, or interact with humans are diverse and ever-changing. Accurate determination of the dynamical model of the robot is difficult because it is difficult to fully and accurately determine the dynamical quantities in the differential equations of motion of the robot. Additionally, another difficulty is that because the robot’s operation is always changing, the dynamical quantities also change. There have been a number of works applying fuzzy logic-based controllers and neural networks to control bipedal robots. These methods can overcome to some extent the uncertainties mentioned above. However, it is a challenge to build appropriate rule systems that ensure the control quality as well as the controller’s ability to perform easily and flexibly. In this paper, a method for building a fuzzy rule system suitable for bipedal robot control is proposed. The design of the motion trajectory for the robot according to the human gait and the analysis of dynamical factors affecting the equilibrium condition and the tracking trajectory were performed to provide informational data as well as parameters. Based on that, a fuzzy rule system and fuzzy controller was proposed and built, allowing a determination of the control force/moment without relying on the dynamical model of the robot. For evaluation, an exact controller based on the assumption of an accurate dynamical model, which was a two-feedback loop controller based on integrated inverse dynamics with proportional integral derivative, is also proposed. To confirm the validity of the proposed fuzzy rule system and fuzzy controller, computation and numerical simulation were performed for both types of controllers. Comparison of numerical simulation results showed that the fuzzy rule system and the fuzzy controller worked well. The proposed fuzzy rule system is simple and easy to apply.


Author(s):  
Muhammad Younis ◽  
Aly R. Seadawy ◽  
Muhammad Z. Baber ◽  
Muhammad W. Yasin ◽  
Syed T. R. Rizvi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document