scholarly journals Gain Variation of 60 GHz Aperture-Coupled Patch Antenna Dependent on the Position on the Ground Plane and Periodic Characteristic

Author(s):  
Haekyo Seo ◽  
Wonbin Hong ◽  
Dong Gun Kam
2016 ◽  
Vol 58 (4) ◽  
pp. 745-747 ◽  
Author(s):  
Haekyo Seo ◽  
Wonbin Hong ◽  
Dong Gun Kam

2019 ◽  
Vol 12 (3) ◽  
pp. 233-239
Author(s):  
Lu-Yang Ji ◽  
Shuai Fu ◽  
Lin-Xi Zhang ◽  
Jian-Ying Li

AbstractIn this work, a new reconfigurable discrete 1D beam-steering Fabry–Perot cavity antenna with enhanced radiation performance is presented. It consists of a probe-fed patch antenna printed on the ground plane and a reconfigurable metasurface acting as the upper partially reflective surface to realize beam steering. By utilizing 6 × 6 proposed reconfigurable unit cells on the superstrate, the beam-steering angle can be effectively enhanced from ±7° to ±17° with fewer active elements and a much simpler biasing network. The proposed antenna was fabricated to validate the feasibility. Good agreement between the simulated and measured results is achieved. Moreover, the measured realized gains are over 11 dBi with a gain variation from the boresight direction to the tilted direction <0.2 dBi.


2016 ◽  
Vol 78 (4-3) ◽  
Author(s):  
Sana Ullah ◽  
Sadiq Ullah ◽  
Shahbaz Khan

In this paper an inset feed 60 GHz millimeter wave microstrip patch antenna is proposed for future high speed wireless communication systems. The performance of a conventional 60 GHz patch antenna compared with metamaterial-based 60 GHz antennas. The later employs three types (mushroom, cross and hexagonal) of Electromagnetic Bandgap (EBG) surfaces as a ground planes. The millimeter wave antenna employing the cross-shaped EBG give improved gain as compared to the rest of the antenna models. The 60 GHz antenna based on the mushroom type EBG present better efficiency due to the surface suppression by the ground plane. The proposed antennas can be used in future high speed wireless applications. Due to the very small size these antennas are suitable for medical implants operating in the unlicensed millimeter wave band.


2017 ◽  
Vol 49 (004) ◽  
pp. 767--772
Author(s):  
G. AHMAD ◽  
M. I. BABAR ◽  
M. IRFAN ◽  
M. ASHRAF ◽  
T. JAN

Author(s):  
Ashish Kumar ◽  
Amar Partap Singh Pharwaha

Background: Patch antennas are composed of the substrate material with patch and ground plane on the both sides of the substrate. The dimensions and performance characteristics of the antenna are highly influenced by the choice of the appropriate substrate depending upon the value of their dielectric constant. Generally, low index substrate materials are used to design the patch antenna but there are also some of the applications, which require the implementation of patch antenna design on high index substrate like silicon and gallium arsenide. Objective: The objective of this article is to review the design of antennas developed on high index substrate and the problems associated with the use of these materials as substrate. Also, main challenges and solutions have been discussed to improve the performance characteristics while using the high index substrates. Method: The review article has divided into various sections including the solution of the problems associated with the high index substrates in the form of micro-machining process. Along with this, types of micro machining and their applications have discussed in detail. Results: This review article investigates the various patch antennas designed with micro-machining technology and also discusses the impact of micro-machining process on the performance parameters of the patch antennas designed on high index substrates. Conclusion: By using the micro-machining process, the performance of patch antenna improves drastically but fabrication and tolerances at such minute structures is very tedious task for the antenna designers.


Sign in / Sign up

Export Citation Format

Share Document