scholarly journals A Unified General Class of Interdistributional Income Inequality Measures Based on Weighted Incomplete Moments

2021 ◽  
Vol 10 (6) ◽  
pp. 22
Author(s):  
Fahad Aldossary ◽  
Abouelmagd, Tamer ◽  
A. A. E. Ahmed

Many authors have proposed measures for between groups income inequalities. Mostly, these measures are based on functional of the income distribution. Others are based on Gini index, measures of entropies or additive functions. Butler and McDonald (1987) developed a class of between groups income inequality measures based on incomplete moments and showed its applicability. In this article, A unified class of interdistributional inequality measures are introduced. Most of previous measures are special cases from the new class, such as Butler-McDonald measures. These new measures are estimated and studied. Also, the new general class is based on probability weighted moments which can be given any values as the upper value. A real data application is presented to compare among all these measures and show the benefits of the new measures.

2020 ◽  
Vol 42 ◽  
pp. e111
Author(s):  
Ana Carla Percontini ◽  
Frank Gomes-Silva ◽  
Gauss Moutinho Crdeiro ◽  
Pedro Rafael Marinho

We define a new class of distributions with one extra shapeparameter including some special cases. We provide numerical and computational aspects of the new class. We proposefunctions using the \textsf{R} language to fit any distribution in this family to a data set. In addition, such functions are implemented efficientlyusing the library \textsf{Rcpp} that enables the incorporation of the codes \textsf{C++} in \textsf{R} automatically. Some examples are presentedfor using the implemented routines in practice. We derive some mathematical properties of this class including explicit expressionsfor the moments, generating function and mean deviations. We discuss the estimation of the model parametersby maximum likelihood and provide an application to a real data set.


2018 ◽  
Vol 7 (2) ◽  
pp. 12 ◽  
Author(s):  
Boikanyo Makubate ◽  
Broderick O. Oluyede ◽  
Gofaone Motobetso ◽  
Shujiao Huang ◽  
Adeniyi F. Fagbamigbe

A new family of generalized distributions called the beta Weibull-G (BWG) distribution is proposed and developed. This new class of distributions has several new and well known distributions including exponentiated-G, Weibull-G, Rayleigh-G, exponential-G, beta exponential-G, beta Rayleigh-G, beta Rayleigh exponential, beta-exponential-exponential, Weibull-log-logistic distributions, as well as several other distributions such as beta Weibull-Uniform, beta Rayleigh-Uniform, beta exponential-Uniform, beta Weibull-log logistic and beta Weibull-exponential distributions as special cases. Series expansion of the density function, hazard function, moments, mean deviations, Lorenz and Bonferroni curves, R\'enyi entropy, distribution of order statistics and maximum likelihood estimates of the model parameters are given. Application of the model to real data set is presented to illustrate the importance and usefulness of the special case beta Weibull-log-logistic distribution.


Author(s):  
Zafar Iqbal ◽  
Muhammad Rashad ◽  
Abdur Razaq ◽  
Muhammad Salman ◽  
Afsheen Javed

We introduce a new class of lifetime models called the transmuted powered moment exponential distribution. More specifically, the transmuted powered moment exponential distribution covers several new distributions. Survival analysis including survival function, hazard rate function and other related measures are computed. Analytical expressions for various mathematical properties of TPMED including rth moment, quantile function, inequality measures, and parameters are estimated by using maximum likelihood estimation and order statistics are also derived. A simulation study of the proposed distribution is performed. It is discovered that the Maximum Likelihood Estimators are consistent since the bias and Mean Square Error approach to zero when the sample size increases. The usefulness of the model associated with this distribution is illustrated by two real data sets and the new model provides a better fit than the models provided in literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Milton A. Cortés ◽  
David Elal-Olivero ◽  
Juan F. Olivares-Pacheco

In this study, we present a new family of distributions through generalization of the extended bimodal-normal distribution. This family includes several special cases, like the normal, Birnbaum-Saunders, Student’s t, and Laplace distribution, that are developed and defined using stochastic representation. The theoretical properties are derived, and easily implemented Monte Carlo simulation schemes are presented. An inferential study is performed for the Laplace distribution. We end with an illustration of two real data sets.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 908
Author(s):  
Perla Celis ◽  
Rolando de la Cruz ◽  
Claudio Fuentes ◽  
Héctor W. Gómez

We introduce a new class of distributions called the epsilon–positive family, which can be viewed as generalization of the distributions with positive support. The construction of the epsilon–positive family is motivated by the ideas behind the generation of skew distributions using symmetric kernels. This new class of distributions has as special cases the exponential, Weibull, log–normal, log–logistic and gamma distributions, and it provides an alternative for analyzing reliability and survival data. An interesting feature of the epsilon–positive family is that it can viewed as a finite scale mixture of positive distributions, facilitating the derivation and implementation of EM–type algorithms to obtain maximum likelihood estimates (MLE) with (un)censored data. We illustrate the flexibility of this family to analyze censored and uncensored data using two real examples. One of them was previously discussed in the literature; the second one consists of a new application to model recidivism data of a group of inmates released from the Chilean prisons during 2007. The results show that this new family of distributions has a better performance fitting the data than some common alternatives such as the exponential distribution.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1138
Author(s):  
Tao Hu ◽  
Baosheng Liang

Motivated by the relative loss estimator of the median, we propose a new class of estimators for linear quantile models using a general relative loss function defined by the Box–Cox transformation function. The proposed method is very flexible. It includes a traditional quantile regression and median regression under the relative loss as special cases. Compared to the traditional linear quantile estimator, the proposed estimator has smaller variance and hence is more efficient in making statistical inferences. We show that, in theory, the proposed estimator is consistent and asymptotically normal under appropriate conditions. Extensive simulation studies were conducted, demonstrating good performance of the proposed method. An application of the proposed method in a prostate cancer study is provided.


2017 ◽  
Vol 50 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Tuncer Acar

Abstract The present paper deals with the rate of convergence of the general class of Durrmeyer operators, which are generalization of Ibragimov-Gadjiev operators. The special cases of the operators include somewell known operators as particular cases viz. Szász-Mirakyan-Durrmeyer operators, Baskakov-Durrmeyer operators. Herewe estimate the rate of convergence of Ibragimov-Gadjiev-Durrmeyer operators for functions having derivatives of bounded variation.


2004 ◽  
Vol 2004 (57) ◽  
pp. 3057-3067 ◽  
Author(s):  
Muhammad Aslam Noor

We introduce a new class of equilibrium problems, known asmixed quasi invex equilibrium(orequilibrium-like) problems. This class of invex equilibrium problems includes equilibrium problems, variational inequalities, and variational-like inequalities as special cases. Several iterative schemes for solving invex equilibrium problems are suggested and analyzed using the auxiliary principle technique. It is shown that the convergence of these iterative schemes requires either pseudomonotonicity or partially relaxed strong monotonicity, which are weaker conditions than the previous ones. As special cases, we also obtained the correct forms of the algorithms for solving variational-like inequalities, which have been considered in the setting of convexity. In fact, our results represent significant and important refinements of the previously known results.


2020 ◽  
Vol 23 (5) ◽  
pp. 1431-1451 ◽  
Author(s):  
Hansjörg Albrecher ◽  
Martin Bladt ◽  
Mogens Bladt

Abstract We extend the Kulkarni class of multivariate phase–type distributions in a natural time–fractional way to construct a new class of multivariate distributions with heavy-tailed Mittag-Leffler(ML)-distributed marginals. The approach relies on assigning rewards to a non–Markovian jump process with ML sojourn times. This new class complements an earlier multivariate ML construction [2] and in contrast to the former also allows for tail dependence. We derive properties and characterizations of this class, and work out some special cases that lead to explicit density representations.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e16089-e16089
Author(s):  
Jean Henri Schoueri ◽  
Luis Eduardo Werneck De Carvalho ◽  
Isabella Batista Martins Portugal ◽  
Manuela de Almeida Roediger ◽  
Edige Felipe de Sousa Santos ◽  
...  

e16089 Background: There are substantial disparities in esophageal cancer mortality across different social groups, including sex, race/ethnicity, geographical location and socio-economic status. Methods: This is an ecological study with secondary data from 2016 to 2018 that evaluated the effects of income-inequality and number of doctors per inhabitant on esophageal cancer mortality in Brazil and its Federative Units. The amount of deaths and the overall number of doctors were obtained from the Department of Informatics of the Unified Health System. Mortality was estimated per 100,000 individuals and age-standardized through the World Health Organization’s population, whereas the rate of doctor per inhabitant was calculated per 1,000 inhabitants. Income-Inequality was measured by the Gini index, obtained from the United Nations Development Programme. Linear regression was performed by the stepwise backward method. Results: Sex, Gini index values and oncology surgeons were all related to lower mortality rates (p < 0.05), whereas clinical oncologists and general surgeons were both associated with higher mortality (p < 0.05). Conclusions: Esophageal cancer mortality rates were influenced by both the type and amount of doctors per inhabitant of any given administrative region in Brazil, however there was no association found with regards to income inequality.[Table: see text]


Sign in / Sign up

Export Citation Format

Share Document