durrmeyer operators
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 31)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Harun ÇİÇEK ◽  
Aydın İZGİ ◽  
Mehmet AYHAN

2021 ◽  
Author(s):  
Asha Ram Gairola ◽  
Karunesh Kumar Singh ◽  
Hassan Khosravian Arab ◽  
Vishnu Narayan Mishra

Abstract We study approximation properties of a new operator DM,1 n (f, x) introduced by Acu et al. in [Results Math 74:90, (2019)] for Lebesgue integrable functions in [0,1]. An error estimate by the Bezier variant of the operators DM,1 n (f, x)is also obtained for the functions of bounded variation. By relevant numerical examples, the orders of approximation by the operator DM,1 n (f, x) and the modified-Bernstein-Durrmeyer operator are also compared.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Abdullah Alotaibi

In this article, our main purpose is to define the p , q -variant of Szász-Durrmeyer type operators with the help of Dunkl generalization generated by an exponential function. We estimate moments and establish some direct results of the aforementioned operators. Moreover, we establish some approximation results in weighted spaces.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhi-Peng Lin ◽  
Wen-Tao Cheng ◽  
Xiao-Wei Xu

In this article, we introduce a new Durrmeyer-type generalization of p , q -Szász-Mirakjan operators using the p , q -gamma function of the second kind. The moments and central moments are obtained. Then, the Voronovskaja-type asymptotic formula is investigated and point-wise estimates of these operators are studied. Also, some local approximation properties of these operators are investigated by means of modulus of continuity and Peetre K -functional. Finally, the rate of convergence and weighted approximation of these operators are presented.


Author(s):  
Gülsüm Ulusoy Ada

The present paper deals with genuine Baskakov Durrmeyer operators which have preserved certain functions. We have obtained quantitative Voronovskaya and quantitative Grüss type Voronovskaya theorems using the weighted modulus of continuity. These results include the preservation properties of the classical genuine Baskakov Durrmeyer operators.


Filomat ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 2595-2604
Author(s):  
Cristina Păcurar ◽  
Radu Păltănea

There are presented two methods for approximation of generalized Urysohn type operators. The first of them is the natural generalization of the method considered first by Demkiv in [1]. The convergence results are given in quantitative form, using certain moduli of continuity. In the final part there are given a few exemplifications for discrete and integral type operators and, in particular, for Bernstein and Durrmeyer operators.


Filomat ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 2533-2544
Author(s):  
N Neha ◽  
Naokant Deo

In this article, we consider Jain-Durrmeyer operators associated with the Apostol-Genocchi polynomials and study the approximation properties of these Durrmeyer operators. Furthermore, we examine the approximation behaviour of these operators including K-functional. We estimate the rate of convergence of the proposed operators for function in Lipschitz-type space and local approximation results by using modulus of continuity. Employing Mathematica software, to show the approximation and the absolute error graphically by varying the values of given parameters.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mohd Qasim ◽  
Mohd Shanawaz Mansoori ◽  
Asif Khan ◽  
Zaheer Abbas ◽  
Mohammad Mursaleen

<p style='text-indent:20px;'>Motivated by certain generalizations, in this paper we consider a new analogue of modified Szá sz-Mirakyan-Durrmeyer operators whose construction depends on a continuously differentiable, increasing and unbounded function <inline-formula><tex-math id="M1">\begin{document}$ \tau $\end{document}</tex-math></inline-formula> with extra parameters <inline-formula><tex-math id="M2">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>. Depending on the selection of <inline-formula><tex-math id="M4">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>, these operators are more flexible than the modified Szá sz-Mirakyan-Durrmeyer operators while retaining their approximation properties. For these operators we give weighted approximation, Voronovskaya type theorem and quantitative estimates for the local approximation.</p>


Sign in / Sign up

Export Citation Format

Share Document