scholarly journals The Transition Ratio of Nosema spp. Spores From Colonies to Honey Versus Honey to Colonies

2018 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Ceren Sarıbıyık ◽  
Aslı Özkırım

Honey bees (Apis mellifera L.) are insects that have an important role in plant pollination as well as production of benefical products such as honey, propolis, pollen, royal jelly, bee venom and beeswax. There is a growing interest in bee diseases and loss, which is a major threat to the economy and human health. Nosemosis is an adult honey bee disease which effects its digestive system mostly. The cause for the disease is Nosema apis or Nosema ceranae but the two can be seen together, too. This article aims to explore the transmission of Nosemosis and its effect on honey. For this purpose, a field study was conducted in Muğla province, where 51 pieces were collected from bee yards as spring samples and 51 pieces from bee yards as autumn samples during these two seasons, and 51 honey samples from bee yards were examined during the honey harvest. The results revealed that Nosema spp. which was obtained from honey bee samples collected in spring was more effective on honey samples. Nosema spp. was found to have a linear relation with the infection in the hive. It was determined that the percentage of Nosema spores seen in adults was 1.63%. This result contributed to the literature by providing this ratio used in estimating the level of infection in the colonies by means of honey sampling. Furthermore this is the first study where the contamination risk of honey from the infected colonies is calculated. Hopefully, this study can provide background for further research on the protection of bee colonies and risk assessment against Nosema spp. disease.

2020 ◽  
Vol 113 (5) ◽  
pp. 2069-2078
Author(s):  
Courtney I MacInnis ◽  
B Andrew Keddie ◽  
Stephen F Pernal

Abstract Nosema disease is a prominent malady among adult honey bees [Apis mellifera L. (Hymenoptera: Apidae)], caused by the microsporidian parasites, Nosema apis Zander (Microspora: Nosematidae) and N. ceranae Fries et al. 1996. The biology of N. apis is well understood, as this parasite was first described over a century ago. As N. ceranae is an emerging parasite of the honey bee, we do not yet understand how long spores of this parasite survive in honey bee colonies, or all the potential modes of transmission among bees. We investigated the viability and infectivity of N. ceranae spores in honey and on beeswax over time after exposure to 33, 20, −12, and −20°C. Spores in honey maintained viability at freezing temperatures for up to 1 yr and remained viable considerably longer than those on beeswax. Based on this evidence, honey may act as an important reservoir for infective spores to initiate or perpetuate N. ceranae infections in honey bee colonies. This work provides information that may help enhance current management recommendations for apiculturalists.


2007 ◽  
Vol 47 (7) ◽  
pp. 883 ◽  
Author(s):  
Rob Manning ◽  
Kate Lancaster ◽  
April Rutkay ◽  
Linda Eaton

The parasite, Nosema apis, was found to be widespread among feral populations of honey bees (Apis mellifera) in the south-west of Western Australia. The location, month of collection and whether the feral colony was enclosed in an object or exposed to the environment, all affected the presence and severity of infection. There was no significant difference in the probability of infection between managed and feral bees. However, when infected by N. apis, managed bees appeared to have a greater severity of the infection.


1999 ◽  
Vol 22 (3) ◽  
pp. 321-323 ◽  
Author(s):  
Geraldo Moretto ◽  
Leonidas João de Mello Jr.

Different levels of infestation with the mite Varroa jacobsoni have been observed in the various Apis mellifera races. In general, bees of European races are more susceptible to the mite than African honey bees and their hybrids. In Brazil honey bee colonies are not treated against the mite, though apparently both climate and bee race influence the mite infestation. Six mixed colonies were made with Italian and Africanized honey bees. The percentage infestation by this parasite was found to be significantly lower in adult Africanized (1.69 ± 0.44) than Italian bees (2.79 ± 0.65). This ratio was similar to that found in Mexico, even though the Africanized bees tested there had not been in contact with varroa, compared to more than 20 years of the coexistence in Brazil. However, mean mite infestation in Brazil on both kinds of bees was only about a third of that found in Mexico.


Insects ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 122 ◽  
Author(s):  
Paul Winkler ◽  
Frank Sieg ◽  
Anja Buttstedt

One of the first tasks of worker honey bees (Apis mellifera) during their lifetime is to feed the larval offspring. In brief, young workers (nurse bees) secrete a special food jelly that contains a large amount of unique major royal jelly proteins (MRJPs). The regulation of mrjp gene expression is not well understood, but the large upregulation in well-fed nurse bees suggests a tight repression until, or a massive induction upon, hatching of the adult worker bees. The lipoprotein vitellogenin, the synthesis of which is regulated by the two systemic hormones 20-hydroxyecdysone and juvenile hormone, is thought to be a precursor for the production of MRJPs. Thus, the regulation of mrjp expression by the said systemic hormones is likely. This study focusses on the role of 20-hydroxyecdysone by elucidating its effect on mrjp gene expression dynamics. Specifically, we tested whether 20-hydroxyecdysone displayed differential effects on various mrjps. We found that the expression of the mrjps (mrjp1–3) that were finally secreted in large amounts into the food jelly, in particular, were down regulated by 20-hydroxyecdysone treatment, with mrjp3 showing the highest repression value.


2015 ◽  
Vol 48 (2) ◽  
pp. 99-108 ◽  
Author(s):  
H.F. Abou-Shaara

AbstractThere are various plants with potential feeding importance to honey bee, Apis mellifera, colonies as source of pollen, nectar or both. Selection of suitable regions for apiaries mainly depends on the availability of honey bee plants in the apiary region. Identifying honey bee plants in specific region is very essential for honey and pollen production from honey bee colonies. Lacking the information about the beneficial plants for honey bees including; plant name, flowering time and potential benefit to honey bee colonies could be considered as a limitation for beekeeping development. So far honey bee plants are not well studied in Egypt. This review paper presents potential honey bee plants in Egypt using the available publications. The studies on honey bee plants in Egypt were also reviewed. This work can be considered as a guide for beekeepers and researchers. Moreover, the presented plants here can be used in comparing honey bee plants of Egypt with other countries to get a better understanding of honey bee flora. More detailed investigations on honey bee plants are strongly required to be done at all Egyptian Governorates


2016 ◽  
Vol 82 (22) ◽  
pp. 6779-6787 ◽  
Author(s):  
Wenfeng Li ◽  
Jay D. Evans ◽  
Qiang Huang ◽  
Cristina Rodríguez-García ◽  
Jie Liu ◽  
...  

ABSTRACTNosema ceranaeis a new and emerging microsporidian parasite of European honey bees,Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene,naked cuticle(nkd), which is a negative regulator of host immune function. Our studies found thatnkdmRNA levels in adult bees were upregulated byN. ceranaeinfection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific tonkdefficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown ofnkdtranscripts inNosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin,Apidaecin,Defensin-1, andPGRP-S2), reduction ofNosemaspore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the hostnkdgene can activate honey bee immune responses, suppress the reproduction ofN. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration.IMPORTANCEGiven the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate that knocking down the honey bee immune repressor-encodingnkdgene can suppress the reproduction ofN. ceranaeand improve the overall health of honey bees, which highlights the potential role of host-derived and RNAi-based therapeutics in controlling the infections in honey bees. The information obtained from this study will have positive implications for honey bee disease management practices.


1988 ◽  
Vol 66 (9) ◽  
pp. 1997-2001 ◽  
Author(s):  
Linda A. Fergusson ◽  
Mark L. Winston

Various levels of wax deprivation in honey bee (Apis mellifera) colonies induced shifts in the temporal pattern of division of labour in worker honey bees. The most extreme wax stress induced an earlier onset of foraging, and an increase in comb building and the production of wax scales. Moderate wax stress induced only an increase in comb building and production of wax scales. No significant differences in development of hypopharyngeal gland acinal diameter were found, suggesting that production of wax and brood food and associated behaviour patterns develop and decline independently. The graded changes in behavioural response to various levels of stress found in this study support the concept of a reserve labour force in honey bee colonies, which can respond to stress through shifts in caste ontogeny.


2018 ◽  
Author(s):  
Tim Regan ◽  
Mark W. Barnett ◽  
Dominik R. Laetsch ◽  
Stephen J. Bush ◽  
David Wragg ◽  
...  

AbstractThe European honey bee (Apis mellifera) plays a major role in pollination and food production, but is under threat from emerging pathogens and agro-environmental insults. As with other organisms, honey bee health is a complex product of environment, host genetics and associated microbes (commensal, opportunistic and pathogenic). Improved understanding of bee genetics and their molecular ecology can help manage modern challenges to bee health and production. Sampling bee and cobiont genomes, we characterised the metagenome of 19 honey bee colonies across Britain. Low heterozygosity was observed in bees from many Scottish colonies, sharing high similarity to the native dark bee, A. mellifera mellifera. Apiaries exhibited high diversity in the composition and relative abundance of individual microbiome taxa. Most non-bee sequences derived from known honey bee commensal bacteria or known pathogens, e.g. Lotmaria passim (Trypanosomatidae), and Nosema spp. (Microsporidia). However, DNA was also detected from numerous additional bacterial, plant (food source), protozoan and metazoan organisms. To classify sequences from cobionts lacking genomic information, we developed a novel network analysis approach clustering orphan contigs, allowing the identification of a pathogenic gregarine. Our analyses demonstrate the power of high-throughput, directed metagenomics in agroecosystems identifying potential threats to honey bees present in their microbiota.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 969
Author(s):  
Isobel Grindrod ◽  
Jessica L. Kevill ◽  
Ethel M. Villalobos ◽  
Declan C. Schroeder ◽  
Stephen John Martin

The combination of Deformed wing virus (DWV) and Varroa destructor is arguably one of the greatest threats currently facing western honey bees, Apis mellifera. Varroa’s association with DWV has decreased viral diversity and increased loads of DWV within honey bee populations. Nowhere has this been better studied than in Hawaii, where the arrival of Varroa progressively led to the dominance of the single master variant (DWV-A) on both mite-infested Hawaiian Islands of Oahu and Big Island. Now, exactly 10 years following the original study, we find that the DWV population has changed once again, with variants containing the RdRp coding sequence pertaining to the master variant B beginning to co-dominate alongside variants with the DWV-A RdRp sequence on the mite-infested islands of Oahu and Big Island. In speculation, based on other studies, it appears this could represent a stage in the journey towards the complete dominance of DWV-B, a variant that appears better adapted to be transmitted within honey bee colonies.


2018 ◽  
Vol 62 (1) ◽  
pp. 141-144 ◽  
Author(s):  
Mayra C. García-Anaya ◽  
Alejandro Romo-Chacón ◽  
Alma I. Sáenz-Mendoza ◽  
Gerardo Pérez-Ordoñez ◽  
Carlos H. Acosta-Muñiz

Abstract The recent alarming loss of honey bee colonies around the world is believed to be related to the presence of viruses. The aim of this study was to detect two major viral diseases, Apis mellifera Filamentous virus (AmFV) and Israeli Acute Paralysis Virus (IAPV) using Reverse Transcription - Polymerase Chain Reaction RT-PCR, in honey bees in Mexico. Adult and larvae honey bee samples were collected from asymptomatic colonies of six major beekeeping regions in the state of Chihuahua, Mexico. Both viruses were detected in both developmental stages of honey bees, IAPV at a higher prevalence (23.5%) as compared to AmFV, only in 0.9% of samples. However, this is the first report on AmFV infection in Mexican apiaries. Further studies are required to understand the AmFV and IAPV impact on colony loss in Mexico and to develop strategies for enhancing the control of viral diseases.


Sign in / Sign up

Export Citation Format

Share Document