scholarly journals On the Dimension of Non-Abelian Tensor Squares of $n$-Lie Algebras

2021 ◽  
Vol 52 ◽  
Author(s):  
Farshid Saeedi ◽  
Nafiseh Akbarossadat

Let $L$ be an $n$-Lie algebra over a field $\F$. In this paper, we introduce the notion of non-abelian tensor square $L\otimes L$ of $L$ and define the central ideal $L\square L$ of it. Using techniques from group theory and Lie algebras, we show that that $L\square L\cong L^{ab}\square L^{ab}$. Also, we establish the short exact sequence\[0\lra\M(L)\lra\frac{L\otimes L}{L\square L}\lra L^2\lra0\]and apply it to compute an upper bound for the dimension of non-abelian tensor square of $L$.

2016 ◽  
Vol 16 (09) ◽  
pp. 1750162 ◽  
Author(s):  
Valeriy G. Bardakov ◽  
Mahender Singh

Let [Formula: see text] be a short exact sequence of Lie algebras over a field [Formula: see text], where [Formula: see text] is abelian. We show that the obstruction for a pair of automorphisms in [Formula: see text] to be induced by an automorphism in [Formula: see text] lies in the Lie algebra cohomology [Formula: see text]. As a consequence, we obtain a four term exact sequence relating automorphisms, derivations and cohomology of Lie algebras. We also obtain a more explicit necessary and sufficient condition for a pair of automorphisms in [Formula: see text] to be induced by an automorphism in [Formula: see text], where [Formula: see text] is a free nilpotent Lie algebra of rank [Formula: see text] and step [Formula: see text].


2004 ◽  
Vol 15 (10) ◽  
pp. 987-1005 ◽  
Author(s):  
MAHMOUD BENKHALIFA

Let R be a principal and integral domain. We say that two differential graded free Lie algebras over R (free dgl for short) are weakly equivalent if and only if the homologies of their corresponding enveloping universal algebras are isomophic. This paper is devoted to the problem of how we can characterize the weakly equivalent class of a free dgl. Our tool to address this question is the Whitehead exact sequence. We show, under a certain condition, that two R-free dgls are weakly equivalent if and only if their Whitehead sequences are isomorphic.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250085 ◽  
Author(s):  
PEYMAN NIROOMAND

In the present paper we extend the results of [2, 4] for the tensor square of Lie algebras. More precisely, for any Lie algebra L with L/L2 of finite dimension, we prove L ⊗ L ≅ L □ L ⊕ L ∧ L and Z∧(L) ∩ L2 = Z⊗(L). Moreover, we show that L ∧ L is isomorphic to derived subalgebra of a cover of L, and finally we give a free presentation for it.


Author(s):  
Graham J. Ellis

AbstractThe Hurewicz theorem, Mayer-Vietoris sequence, and Whitehead's certain exact sequence are proved for simplicial Lie algebras. These results are applied, using crossed module techniques, to obtain information on the low dimensional homology of a Lie algebra, and information on aspherical presentations of Lie algebras.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250017 ◽  
Author(s):  
E. CHIBRIKOV

In this paper we prove that every recursively presented Lie algebra over a field which is finite extention of its simple subfield can be embedded in a recursively presented Lie algebra defined by relations which are equalities of (nonassociative) words of generators and α + β = γ(α, β, γ are free generators).


2019 ◽  
Vol 19 (01) ◽  
pp. 2050012
Author(s):  
Farangis Johari ◽  
Peyman Niroomand

By considering the nilpotent Lie algebra with the derived subalgebra of dimension [Formula: see text], we compute some functors including the Schur multiplier, the exterior square and the tensor square of these Lie algebras. We also give the corank of such Lie algebras.


2019 ◽  
Vol 29 (05) ◽  
pp. 885-891
Author(s):  
Şehmus Fındık ◽  
Nazar Şahi̇n Öğüşlü

A palindrome, in general, is a word in a fixed alphabet which is preserved when taken in reverse order. Let [Formula: see text] be the free metabelian Lie algebra over a field of characteristic zero generated by [Formula: see text]. We propose the following definition of palindromes in the setting of Lie algebras: An element [Formula: see text] is called a palindrome if it is preserved under the change of generators; i.e. [Formula: see text]. We give a linear basis and an explicit infinite generating set for the Lie subalgebra of palindromes.


1961 ◽  
Vol 13 ◽  
pp. 201-216 ◽  
Author(s):  
Shigeaki Tôgô

LetLbe a Lie algebra over a field of characteristic 0 and letD(L)be the derivation algebra ofL, that is, the Lie algebra of all derivations ofL. Then it is natural to ask the following questions: What is the structure ofD(L)?What are the relations of the structures ofD(L)andL? It is the main purpose of this paper to present some results onD(L)as the answers to these questions in simple cases.Concerning the questions above, we give an example showing that there exist non-isomorphic Lie algebras whose derivation algebras are isomorphic (Example 3 in § 5). Therefore the structure of a Lie algebraLis not completely determined by the structure ofD(L). However, there is still some intimate connection between the structure ofD(L)and that ofL.


2015 ◽  
Vol 15 (02) ◽  
pp. 1650029 ◽  
Author(s):  
Leandro Cagliero ◽  
Fernando Szechtman

Let 𝔤 be a finite-dimensional Lie algebra over a field of characteristic 0, with solvable radical 𝔯 and nilpotent radical 𝔫 = [𝔤, 𝔯]. Given a finite-dimensional 𝔤-module U, its nilpotency series 0 ⊂ U(1) ⊂ ⋯ ⊂ U(m) = U is defined so that U(1) is the 0-weight space of 𝔫 in U, U(2)/U(1) is the 0-weight space of 𝔫 in U/U(1), and so on. We say that U is linked if each factor of its nilpotency series is a uniserial 𝔤/𝔫-module, i.e. its 𝔤/𝔫-submodules form a chain. Every uniserial 𝔤-module is linked, every linked 𝔤-module is indecomposable with irreducible socle, and both converses fail. In this paper, we classify all linked 𝔤-modules when 𝔤 = 〈x〉 ⋉ 𝔞 and ad x acts diagonalizably on the abelian Lie algebra 𝔞. Moreover, we identify and classify all uniserial 𝔤-modules amongst them.


1997 ◽  
Vol 49 (3) ◽  
pp. 600-616 ◽  
Author(s):  
Shmuel Rosset ◽  
Alon Wasserman

AbstractIn group theory Schreier's technique provides a basis for a subgroup of a free group. In this paper an analogue is developed for free Lie algebras. It hinges on the idea of cutting a Hall set into two parts. Using it, we show that proper subalgebras of finite codimension are not finitely generated and, following M. Hall, that a finitely generated subalgebra is a free factor of a subalgebra of finite codimension.


Sign in / Sign up

Export Citation Format

Share Document