On the Dimension of Non-Abelian Tensor Squares of $n$-Lie Algebras
Keyword(s):
Let $L$ be an $n$-Lie algebra over a field $\F$. In this paper, we introduce the notion of non-abelian tensor square $L\otimes L$ of $L$ and define the central ideal $L\square L$ of it. Using techniques from group theory and Lie algebras, we show that that $L\square L\cong L^{ab}\square L^{ab}$. Also, we establish the short exact sequence\[0\lra\M(L)\lra\frac{L\otimes L}{L\square L}\lra L^2\lra0\]and apply it to compute an upper bound for the dimension of non-abelian tensor square of $L$.
2016 ◽
Vol 16
(09)
◽
pp. 1750162
◽
2004 ◽
Vol 15
(10)
◽
pp. 987-1005
◽
Keyword(s):
2012 ◽
Vol 11
(05)
◽
pp. 1250085
◽
1993 ◽
Vol 54
(3)
◽
pp. 393-419
◽
2012 ◽
Vol 11
(01)
◽
pp. 1250017
◽
2019 ◽
Vol 19
(01)
◽
pp. 2050012
Keyword(s):
2019 ◽
Vol 29
(05)
◽
pp. 885-891
Keyword(s):
1961 ◽
Vol 13
◽
pp. 201-216
◽
Keyword(s):
1997 ◽
Vol 49
(3)
◽
pp. 600-616
◽
Keyword(s):