Extensions and automorphisms of Lie algebras
Let [Formula: see text] be a short exact sequence of Lie algebras over a field [Formula: see text], where [Formula: see text] is abelian. We show that the obstruction for a pair of automorphisms in [Formula: see text] to be induced by an automorphism in [Formula: see text] lies in the Lie algebra cohomology [Formula: see text]. As a consequence, we obtain a four term exact sequence relating automorphisms, derivations and cohomology of Lie algebras. We also obtain a more explicit necessary and sufficient condition for a pair of automorphisms in [Formula: see text] to be induced by an automorphism in [Formula: see text], where [Formula: see text] is a free nilpotent Lie algebra of rank [Formula: see text] and step [Formula: see text].