Portrait préindustriel dans un contexte de grande variabilité naturelle: une étude de cas dans le centre du Québec (Canada)

2011 ◽  
Vol 87 (05) ◽  
pp. 612-624 ◽  
Author(s):  
Eric Alvarez ◽  
Louis Bélanger ◽  
Louis Archambault ◽  
Frédéric Raulier

Pre-industrial forest cover portrait is a recognized method for establishing the bases of sustainable forest management. However, it is a spatially and temporally dependant concept that should be used with caution in presence of big fires. The objective of the study was to portray the pre-industrial landscape in a mixedwood temperate forest in central Quebec at different spatial scales. The study was based on archival records from a forest company. The pre-industrial forest cover landscape of our study area was mainly composed of mature or old-growth (>100 years) stands and dominated by mixedwood forest stands with intolerant hardwoods. The main tree species were white birch, black spruce and jack pine, three species associated to forest succession after fire in the boreal forest. Considering the great variability caused by the fires and partial knowledge of this variability, for each spatial scale considered, we propose some management targets based on the main pre-industrial characteristics of this forest. To respect the pre-industrial variability, our study suggested that silviculture should be adapted at different landscape scales. Cover types and age class targets should be based on main preindustrial characteristics at each landscape scale analyzed.

Rangifer ◽  
2003 ◽  
Vol 23 (5) ◽  
pp. 247 ◽  
Author(s):  
Émilie Lantin ◽  
Pierre Drapeau ◽  
Marcel Paré ◽  
Yves Bergeron

Woodland caribou (Rangifer tarandus caribou) require a diversity of forested habitats over large areas and may thus be particularly affected by the large-scale changes in the composition and age-class distribution of forest landscapes induced by the northern expansion of forest management. In this study we examine habitat characteristics associated to the use of calving areas by woodland caribou females and calves at different spatial scales. Thirty females were captured and collared with Argos satellite transmitters that allowed to locate 14 calving areas. Field surveys were conducted at each of these areas to measure the landscape composition of forest cover types and local vegetation characteristics that are used for both forage conditions and protection cover. At the scale of the calving area, univariate comparisons of the amount of forest cover types between sites with and without calves showed that the presence of calves was associated to mature black spruce forest with a high percent cover of terrestrial lichens. Within calving grounds, univariate comparisons showed that vegetation features like ericaceans and terrestrial lichens, that are important food resources for lactating females, were more abundant in calving areas where females were seen with a calf in mid-July than in areas where females were seen alone. The protection of the vegetation cover against predators was however similar between calving areas with or with¬out a calf. Logistic regression results also indicated that vegetation characteristics associated to forage conditions were positively associated to calf presence on calving grounds. Our results suggest that foraging conditions should be given more attention in analyses on habitat requirements of woodland caribou.


2003 ◽  
Vol 79 (1) ◽  
pp. 132-146 ◽  
Author(s):  
Dennis Yemshanov ◽  
Ajith H Perera

We reviewed the published knowledge on forest succession in the North American boreal biome for its applicability in modelling forest cover change over large extents. At broader scales, forest succession can be viewed as forest cover change over time. Quantitative case studies of forest succession in peer-reviewed literature are reliable sources of information about changes in forest canopy composition. We reviewed the following aspects of forest succession in literature: disturbances; pathways of post-disturbance forest cover change; timing of successional steps; probabilities of post-disturbance forest cover change, and effects of geographic location and ecological site conditions on forest cover change. The results from studies in the literature, which were mostly based on sample plot observations, appeared to be sufficient to describe boreal forest cover change as a generalized discrete-state transition process, with the discrete states denoted by tree species dominance. In this paper, we outline an approach for incorporating published knowledge on forest succession into stochastic simulation models of boreal forest cover change in a standardized manner. We found that the lack of details in the literature on long-term forest succession, particularly on the influence of pre-disturbance forest cover composition, may be limiting factors in parameterizing simulation models. We suggest that the simulation models based on published information can provide a good foundation as null models, which can be further calibrated as detailed quantitative information on forest cover change becomes available. Key words: probabilistic model, transition matrix, boreal biome, landscape ecology


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Oscar V. Bautista-Cespedes ◽  
Louise Willemen ◽  
Augusto Castro-Nunez ◽  
Thomas A. Groen

AbstractThe Amazon rainforest covers roughly 40% of Colombia’s territory and has important global ecological functions. For more than 50 years, an internal war in the country has shaped this region. Peace negotiations between the government and the Revolutionary Armed Forces of Colombia (FARC) initiated in 2012 resulted in a progressive de-escalation of violence and a complete ceasefire in 2016. This study explores the role of different deforestation drivers including armed conflict variables, in explaining deforestation for three periods between 2001 and 2015. Iterative regression analyses were carried out for two spatial extents: the entire Colombian Amazon and a subset area which was most affected by deforestation. The results show that conflict variables have positive relationships with deforestation; yet, they are not among the main variables explaining deforestation. Accessibility and biophysical variables explain more variation. Nevertheless, conflict variables show divergent influence on deforestation depending on the period and scale of analysis. Based on these results, we develop deforestation risk maps to inform the design of forest conservation efforts in the post-conflict period.


2014 ◽  
Vol 369 (1643) ◽  
pp. 20130194 ◽  
Author(s):  
Michael D. Madritch ◽  
Clayton C. Kingdon ◽  
Aditya Singh ◽  
Karen E. Mock ◽  
Richard L. Lindroth ◽  
...  

Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaëtane Le Provost ◽  
Jan Thiele ◽  
Catrin Westphal ◽  
Caterina Penone ◽  
Eric Allan ◽  
...  

AbstractLand-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


2021 ◽  
Vol 17 (1) ◽  
pp. 12-26
Author(s):  
A.F. Chukwuka ◽  
A. Alo ◽  
O.J. Aigbokhan

This study set out to assess the dynamic characteristics of the Ikere forest reserve landscape between 1985 and 2017 using remote sensing data and spatial metrics. Landscape of the study area maintained complex patterns of spatial heterogeneity over the years. Forest cover loss to other land cover types results in new large non-forest area at increasing rate. As at the year 2017, the changes in land cover types were not yet at equilibrium, thus the need to determine the future forest cover extent using a three-way markov Chain model. The decrease in number of patches of forest land (NumP) with increase in its mean patch size (MPS) shows that the forest is becoming a single unit probably due to clearing of existing patches of forest trees. The decrease in class diversity and evenness (SDI and SEI) of the general landscape over the years strengthens this assertion. The findings of this study would be very helpful to government and other stakeholders responsible for ensuring sustainable forest and general environment. Keyword: Landscape, Spatial metrics, sustainable forest and Environment


2008 ◽  
Vol 84 (4) ◽  
pp. 548-552 ◽  
Author(s):  
Antony W Diamond

Research on forest bird ecology in the ACWERN (Atlantic Cooperative Wildlife Ecology Research Network) lab at the University of New Brunswick, Fredericton, since 1995 has focused on assessing the relative contributions of habitat quality at large (“landscape”) and small (“local” or “stand”) spatial scales. To do so we had to develop methods for assessing key demographic components of fitness (productivity and survival) at large spatial scales. The large extent of forest cover in the Maritimes contrasts with regions where such work has traditionally been carried out, in which forest is clearly fragmented by agriculture or residential development. Our main findings are that spatial effects in highly forested landscapes can often be detected only by using species-specific habitat models, rather than broader categories such as “mature” or “softwood”, that Blackburnian Warblers (Dendroica fusca) are effective indicators of mixedwood forest but define it differently than forest managers do, and that cavity nesters (e.g., woodpeckers) may require different habitat components for nesting and feeding and so cannot be managed for solely on the basis of providing snags for nesting. Our focus has shifted recently to intensive studies on a species at risk, Bicknell's Thrush (Catharus bicknelli), which in New Brunswick breeds in man-made regenerating softwood forest stands, and assessing its response both to precommercial thinning of the breeding habitat and to effects carrying over from the winter habitat in the Caribbean. Key words: landscape effects, thresholds, survival, productivity, fitness, carry-over, habitat, fragmentation


Author(s):  
Brady S. Hardiman ◽  
Elizabeth A. LaRue ◽  
Jeff W. Atkins ◽  
Robert T. Fahey ◽  
Franklin W. Wagner ◽  
...  

Forest canopy structure (CS) controls many ecosystem functions and is highly variable across landscapes, but the magnitude and scale of this variation is not well understood. We used a portable canopy lidar system to characterize variation in five categories of CS along N = 3 transects (140–800 m long) at each of six forested landscapes within the eastern USA. The cumulative coefficient of variation was calculated for subsegments of each transect to determine the point of stability for individual CS metrics. We then quantified the scale at which CS is autocorrelated using Moran’s I in an Incremental Autocorrelation analysis. All CS metrics reached stable values within 300 m but varied substantially within and among forested landscapes. A stable point of 300 m for CS metrics corresponds with the spatial extent that many ecosystem functions are measured and modeled. Additionally, CS metrics were spatially autocorrelated at 40 to 88 m, suggesting that patch scale disturbance or environmental factors drive these patterns. Our study shows CS is heterogeneous across temperate forest landscapes at the scale of 10’s of meters, requiring a resolution of this size for upscaling CS with remote sensing to large spatial scales.


1997 ◽  
Vol 13 (6) ◽  
pp. 857-866 ◽  
Author(s):  
Xue Ying Zhuang ◽  
Richard T. Gorlett

ABSTRACTHong Kong is on the northern margin of the Asian tropics. The original forest cover was cleared centuries ago but secondary forest has developed since 1945 at many sites protected from fire and cutting. There are also older forest patches maintained behind villages for reasons of ‘feng shui’, the Chinese system of geomancy. All plants >2 cm dbh were identified and measured in forty-four 400-m2 plots. Detrended correspondence analysis showed a floristic continuum, with the montane sites (>500 m) most distinct and some overlap between lowland post-1945 secondary forest and the feng shui woods. The 30–40 year-old secondary forest is dominated by Persea spp. Montane forest is similar but lacks several common lowland taxa of tropical genera and includes more subtropical taxa. The feng shui woods have the most complex structure and contain some tree species not found in other forest types. Their origin and history is obscure but we suggest that both planting and selective harvesting have had a role in their current species composition


Sign in / Sign up

Export Citation Format

Share Document