forest succession
Recently Published Documents


TOTAL DOCUMENTS

711
(FIVE YEARS 134)

H-INDEX

66
(FIVE YEARS 6)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 85
Author(s):  
Yifan Song ◽  
Ge Yan ◽  
Guangfu Zhang

In the process of subtropical forest succession, it has long been recognized that population decline of Masson pines in coniferous-broadleaf mixed forest is caused by shading from broadleaf trees. However, little is known about the mechanism underlying the interaction between them. Here, we first chose two sets of Masson pine plots approximately aged 60 years in subtropical mountainous areas in eastern China (i.e., pure coniferous forest vs. coniferous-broadleaf mixed forest). Then, we measured and compared tree height, diameter at breast height, first branch height (FBH), live crown ratio (LCR) of Masson pines between the two sets of plots, and also determined the difference in growth performance of Masson pines relative to their neighboring broadleaf trees in the mixed forest stand. Compared with plots in pine forests, Masson pines in mixed plots had lower tree height and crown breadth, higher FBH, lower LCR, and leaf area. Furthermore, the difference of mean FBH between reference trees (Masson pines) and their neighboring trees (i.e., broadleaf trees) in mixed forest plots was greater than that in pine forest plots, and the ratio of LCR between Masson pines and their neighbors (0.46) in mixed forest was significantly smaller than in pine forest (1.05), indicating that those broadleaf trees around Masson pines probably affected their growth. The mean distance between Masson pines and neighboring trees (1.59 m) in mixed forest plots was significantly shorter than in pine forest plots (2.77 m) (p < 0.01), suggesting that strong competition may occur between reference trees and their neighbors. There was a significant difference in the ratio of crown volume between reference tree Masson pine and its neighboring trees in mixed forests (p < 0.01), indicating that the ratio of biomass synthesis to consumption of pines was much lower than their nearby broadleaf trees in mixed forest. Our results have demonstrated for the first time that Masson pines’ population decline is affected by shade-tolerant broadleaf late-successional species, which can be primarily attributed to the distinctive light transmittance of dominant species nearby (pure pine vs. mixed forest). This study provides a new perspective for future studies on the mechanism of forest succession.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1770
Author(s):  
Juan A. Blanco ◽  
Yueh-Hsin Lo ◽  
James P. Kimmins ◽  
Adrian Weber

Forest succession is an ecological phenomenon that can span centuries. Although the concept of succession was originally formulated as a deterministic sequence of different plant communities by F. Clements more than a century ago, nowadays it is recognized that stochastic events and disturbances play a pivotal role in forest succession. In spite of that, forest maps and management plans around the world are developed and focused on a unique “climax” community, likely due to the difficulty of quantifying alternative succession pathways. In this research, we explored the possibility of developing a Markov Chain model to study multiple pathway succession scenarios in mixed forests of western red cedar, hemlock and Pacific silver fir on northern Vancouver Island (western Canada). We created a transition matrix using the probabilities of change between alternative ecological stages as well as red cedar regeneration. Each ecological state was defined by the dominant tree species and ages. Our results indicate that, compared to the traditional Clementsian, deterministic one-pathway succession model, which is unable to replicate current stand distribution of these forests in the region, a three-pathway stochastic succession model, calibrated by a panel of experts, can mimic the observed landscape distribution among different stand types before commercial logging started in the region. We conclude that, while knowing the difficulty of parameterizing this type of models, their use is needed to recognize that for a given site, there may be multiple “climax” communities and hence forest management should account for them.


2021 ◽  
Author(s):  
Van Lantz ◽  
Galen McMonagle ◽  
Chris Hennigar ◽  
Chinmay Sharma ◽  
Patrick Withey ◽  
...  

Abstract Climate change is expected to have significant impacts on forests by affecting the successional dynamics of tree species and the performance of plantations, among others. Research is needed to better understand how these factors will affect forests and economies in different regions, and how we can best adapt. To shed some light on these issues, we couple an economic (Computable General Equilibrium) model with a forest management (Woodstock) model to analyze the potential climate change impacts and adaptation options on timber supply and the economy over the 2015-95 period in a case-study province of New Brunswick, Canada. We estimate that climate change may have relatively large negative impacts on softwood timber supply (at 26% by 2095), softwood forestry & logging sector output quantity (at 12% by 2095), and softwood-dependent forestry manufacturing sector output (ranging from 6% to 27% by 2095). Negative impacts on GDP may be relatively smaller (at up to a 0.33% reduction by 2095). Adapting to these climate-related changes by planting drought-resistant softwood seedlings or hardwood seedlings in place of failed softwood plantations can reduce these negative impacts. While the former adaptation option is supported using cost-benefit analysis, the latter is not – due to the large incremental costs of growing, planting, and tending hardwood seedlings. Methods developed in this study can be applied in other regions to help guide decision-making around forest management in the face of a changing climate.


2021 ◽  
Vol 502 ◽  
pp. 119706
Author(s):  
Xiaoye Zhu ◽  
Xi Fang ◽  
Liufang Wang ◽  
Wenhua Xiang ◽  
Hattan A. Alharbi ◽  
...  

CATENA ◽  
2021 ◽  
Vol 207 ◽  
pp. 105613
Author(s):  
Zhen Bai ◽  
Ji Ye ◽  
Yu-Lian Wei ◽  
Shao-Kui Yan ◽  
Hai-Sheng Yuan

2021 ◽  
pp. 1-11
Author(s):  
Shannon White ◽  
Xinbiao Zhu ◽  
Fanrui Meng ◽  
Scott Taylor ◽  
Charles P.-A. Bourque

Moose (Alces alces L.) browsing in Gros Morne National Park has damaged its balsam fir (Abies balsamea (L.) Mill.)dominated forest. A forest estate model was used to evaluate (i) the impacts of moose browsing and woodcutting on forest succession and (ii) strategies of forest restoration through planting and moose population management. The simulation results show that under current heavy browsing pressure growing stock of balsam fir decreases by 38%, but the area of spruce (Picea mariana (Mill.) BSP and P. glauca (Moench) Voss) increases by 32% over a 100-year planning horizon, compared to that under light browsing scenario which is assumed to be similar to the forest outside the Park due to moose population management. Annual allowable cut (AAC) for the Park’s 19 400 ha domestic harvest area is estimated to be around 120 979 m3 in a light browsing scenario, 21% higher than the sustainable harvest level in a heavy browsing scenario. The model forecasts a 97% reforestation of the Park’s 7 194 ha disturbed area by planting in the heavy browsing scenario, leading to an increase in total forest growing stock by 22% and AAC by 12%. Integration of planting with moose population management could be a more efficient way of restoring forest under high browsing pressure in GMNP.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 567
Author(s):  
André Eduardo Biscaia Lacerda

As secondary forests become more common around the world, it is essential to understand successional pathways to ensure their proper forest management. Despite optimism about secondary forests in terms of landscape restoration, the influence of invasive species on their development has been poorly explored. Here, forest plots in the Araucaria Forest, Southern Brazil, are used to compare forest dynamics over a 14-year period between unmanaged bamboo forest development (control) and the removal of bamboo. Six control plots (15 × 15 m) were monitored for all adult trees since 2007 alongside six adjacent removal plots; after the initial measurement of the control in 2007, all plots were measured bi-annually from 2010 to 2020. Comparisons were based on tree species diversity, composition, and structure parameters. Removal plots show a trend towards developing a forest composition with more secondary and late successional species while the control plots demonstrate succession restricted to the pioneer trees that regenerated immediately after bamboo die-off (2005–2006). Without the presence of bamboos, removal plots are mirroring the well-known successional pathway typical of the Araucaria Forest. Conversely, bamboos are effectively arresting successional development in the control, resulting in lower levels of diversity and less complex forest structure. For the first time, this study presents a direct analysis of the influence of bamboos on forest succession, providing evidence on which practices to manage bamboo forests can be developed so these secondary forests can fulfill their ecological and economic potential.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1120
Author(s):  
Irene Adamo ◽  
Edgar Ortiz-Malavasi ◽  
Robin Chazdon ◽  
Priscila Chaverri ◽  
Hans ter Steege ◽  
...  

Successional dynamics of plants and animals during tropical forest regeneration have been thoroughly studied, while fungal compositional dynamics during tropical forest succession remain unknown, despite the crucial roles of fungi in ecological processes. We combined tree data and soil fungal DNA metabarcoding data to compare richness and community composition along secondary forest succession in Costa Rica and assessed the potential roles of abiotic factors influencing them. We found a strong coupling of tree and soil fungal community structure in wet tropical primary and regenerating secondary forests. Forest age, edaphic variables, and regional differences in climatic conditions all had significant effects on tree and fungal richness and community composition in all functional groups. Furthermore, we observed larger site-to-site compositional differences and greater influence of edaphic and climatic factors in secondary than in primary forests. The results suggest greater environmental heterogeneity and greater stochasticity in community assembly in the early stages of secondary forest succession and a certain convergence on a set of taxa with a competitive advantage in the more persisting environmental conditions in old-growth forests. Our work provides unprecedented insights into the successional dynamics of fungal communities during secondary tropical forest succession.


2021 ◽  
Author(s):  
Ruiqiang Liu ◽  
Yanghui He ◽  
Guiyao Zhou ◽  
Junjiong Shao ◽  
Lingyan Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document