Approximate Ro-Vibrational Spectrum of the Modified Rosen–Morse Molecular Potential Using the Nikiforov–Uvarov Method

2013 ◽  
Vol 68 (6-7) ◽  
pp. 427-432 ◽  
Author(s):  
Ali Akbar Rajabi ◽  
Majid Hamzavi

By using the Nikiforov-Uvarov (NU) method and a new approximation scheme to the centrifugal term, we obtained the solutions of the radial Schrödinger equation (SE) for the modified Rosen- Morse (mRM) potential. In this paper, we get the approximate energy eigenvalues and show that the results are in good agreement with those obtained before. Eigenfunctions are also presented for completeness.

2020 ◽  
Vol 29 (06) ◽  
pp. 2050032
Author(s):  
Enayatolah Yazdankish

The analytic solutions of the Schrodinger equation for the Woods–Saxon (WS) potential and also for the generalized WS potential are obtained for the [Formula: see text]-wave nonrelativistic spectrum, with an approximated form of the WS potential and centrifugal term. Due to this fact that the potential is an exponential type and the centrifugal is a radial term, we have to use an approximated scheme. First, the Nikiforov–Uvarov (NU) method is introduced in brief, which is a systematical method, and then Schrodinger equation is solved analytically. Energy eigenvalues and the corresponding eigenvector are derived analytically by using the NU method. After that, the generalized WS potential is discussed at the end.


2009 ◽  
Vol 18 (03) ◽  
pp. 631-641 ◽  
Author(s):  
V. H. BADALOV ◽  
H. I. AHMADOV ◽  
A. I. AHMADOV

In this work, the analytical solution of the radial Schrödinger equation for the Woods–Saxon potential is presented. In our calculations, we have applied the Nikiforov–Uvarov method by using the Pekeris approximation to the centrifugal potential for arbitrary l states. The bound state energy eigenvalues and corresponding eigenfunctions are obtained for various values of n and l quantum numbers.


2015 ◽  
Vol 70 (2) ◽  
pp. 85-90 ◽  
Author(s):  
Babatunde J. Falaye ◽  
Sameer M. Ikhdair ◽  
Majid Hamzavi

AbstractIn this study, we obtain the approximate analytical solutions of the radial Schrödinger equation for the Deng–Fan diatomic molecular potential by using the exact quantisation rule approach. The wave functions were expressed by hypergeometric functions via the functional analysis approach. An extension to the rotational–vibrational energy eigenvalues of some diatomic molecules is also presented. It is shown that the calculated energy levels are in good agreement with those obtained previously (Enℓ–D; shifted Deng–Fan).


2021 ◽  
Vol 14 (4) ◽  
pp. 339-347

Abstract: In this work, we obtain the Schrödinger equation solutions for the Varshni potential using the Nikiforov-Uvarov method. The energy eigenvalues are obtained in non-relativistic regime. The corresponding eigenfunction is obtained in terms of Laguerre polynomials. We applied the present results to calculate heavy-meson masses of charmonium cc ¯ and bottomonium bb ¯. The mass spectra for charmonium and bottomonium multiplets have been predicted numerically. The results are in good agreement with experimental data and the works of other researchers. Keywords: Schrödinger equation, Varshni potential, Nikiforov-Uvarov method, Heavy meson. PACs: 14.20.Lq; 03.65.-w; 14.40.Pq; 11.80.Fv.


2021 ◽  
Vol 67 (2 Mar-Apr) ◽  
pp. 193
Author(s):  
E. P. Inyang ◽  
E. S. William ◽  
J. A. Obu

Analytical solutions of the N-dimensional Schrödinger equation for the newly proposed Varshni-Hulthén potential are obtained within the framework of Nikiforov-Uvarov method by using Greene-Aldrich approximation scheme to the centrifugal barrier. The numerical energy eigenvalues and the corresponding normalized eigenfunctions are obtained in terms of Jacobi polynomials. Special cases of the potential are equally studied and their numerical energy eigenvalues are in agreement with those obtained previously with other methods. However, the behavior of the energy for the ground state and several excited states is illustrated graphically.


2019 ◽  
Vol 34 (31) ◽  
pp. 1950201
Author(s):  
M. Abu-Shady

By using the conformable fractional of the Nikiforov–Uvarov (CF–NU) method, the radial Schrödinger equation is analytically solved. The energy eigenvalues and corresponding functions are obtained, in which the dependent temperature potential is employed. The effect of fraction-order parameter is studied on the heavy-quarkonium masses such as charmonium and bottomonium in a hot QCD medium in the 3D and the higher-dimensional space. This paper discusses the flavor dependence of their binding energies and explores the nature of dissociation by employing the perturbative, nonperturbative, and the lattice-parametrized form of the Debye masses in the medium-modified potential. A comparison is studied with recent works. We conclude that the fractional-order plays an important role in a hot QCD medium in the 3D with consideration of a form of the Debye mass.


2020 ◽  
Vol 66 (6 Nov-Dec) ◽  
pp. 730 ◽  
Author(s):  
E. S. William ◽  
E. P. Inyang ◽  
E. A. Thompson

In this study, we obtained bound state solutions of the radial Schrödinger equation by the superposition of Hulthén plus Hellmann potential within the framework of Nikiforov-Uvarov (NU) method for an arbitrary  - states. The corresponding normalized wave functions expressed in terms of Jacobi polynomial for a particle exposed to this potential field was also obtained. The numerical energy eigenvalues for different quantum state have been computed. Six special cases are also considered and their energy eigenvalues are obtained. Our results are found to be in good agreement with the results in literature. The behavior of energy in the ground and excited state for different quantum state are studied graphically.


2009 ◽  
Vol 24 (28n29) ◽  
pp. 5523-5529 ◽  
Author(s):  
WEN-CHAO QIANG ◽  
WEN LI CHEN ◽  
KAI LI ◽  
HUA-PING ZHANG

We developed a new and simple approximation scheme for centrifugal term. Using the new approximate formula for 1/r2 we derived approximately analytical solutions to the radial Schrödinger equation of the Hulthén potential with arbitrary l-states. Normalized analytical wave-functions are also obtained. Some energy eigenvalues are numerically calculated and compared with those obtained by C. S. Jia et al. and other methods such as the asymptotic iteration, the supersymmetry, the numerical integration methods and a Mathematica program, schroedinger, by W. Lucha and F. F. Schöberl.


2008 ◽  
Vol 17 (07) ◽  
pp. 1327-1334 ◽  
Author(s):  
RAMAZÀN SEVER ◽  
CEVDET TEZCAN

Exact solutions of Schrödinger equation are obtained for the modified Kratzer and the corrected Morse potentials with the position-dependent effective mass. The bound state energy eigenvalues and the corresponding eigenfunctions are calculated for any angular momentum for target potentials. Various forms of point canonical transformations are applied.


2009 ◽  
Vol 23 (18) ◽  
pp. 2269-2279 ◽  
Author(s):  
YONG-FENG DIAO ◽  
LIANG-ZHONG YI ◽  
TAO CHEN ◽  
CHUN-SHENG JIA

By using a modified approximation scheme to deal with the centrifugal term, we solve approximately the Schrödinger equation for the Eckart potential with the arbitrary angular momentum states. The bound state energy eigenvalues and the unnormalized radial wave functions are approximately obtained in a closed form by using the supersymmetric shape invariance approach and the function analysis method. The numerical experiments show that our analytical results are in better agreement with those obtained by using the numerical integration approach than the analytical results obtained by using the conventional approximation scheme to deal with the centrifugal term.


Sign in / Sign up

Export Citation Format

Share Document