scholarly journals Progress on petrology of high- and ultrahigh-pressure metamorphic rocks: 25 years

2017 ◽  
Vol 123 (9) ◽  
pp. 661-675
Author(s):  
Masaki Enami ◽  
Takao Hirajima
2011 ◽  
Vol 119 (1) ◽  
pp. 15-31 ◽  
Author(s):  
Yuanbao Wu ◽  
Shan Gao ◽  
Xiaochi Liu ◽  
Jing Wang ◽  
Min Peng ◽  
...  

Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 488-492 ◽  
Author(s):  
M. Brown ◽  
C.L. Kirkland ◽  
T.E. Johnson

Abstract A time-series analysis of thermobaric ratios (temperature/pressure [T/P]) for Paleoarchean to Cenozoic metamorphic rocks identified significant shifts in mean T/P that may be related to secular change in the geodynamics on Earth. Thermobaric ratios showed significant (>95% confidence) change points at 1910, 902, 540, and 515 Ma, recording drops in mean T/P, and at 1830, 604, and 525 Ma, recording rises in mean T/P. Highest mean T/P occurred during the Mesoproterozoic, and lowest mean T/P occurred from the Cambrian to the Oligocene. Correlated changes were seen between T/P and global data sets of time-constrained hafnium (Hf) and oxygen (O) isotope compositions in zircon. The range of correlated variation in T/P, Hf, and O was larger during the formation of Rodinia than Columbia. Large changes and a wide range for these variables continued through the Phanerozoic, during which a statistically significant 83 m.y. frequency of T/P excursions recorded the high tempo of orogenic activity associated with the separation, migration, and accretion of continental terranes during the formation of Pangea. Since the early Tonian, the decreasing mean T/P of metamorphism, widespread appearance of blueschist and ultrahigh-pressure metamorphism, and wide fluctuations in Hf and O isotope compositions document a change to the modern plate-tectonic regime, characterized by widespread continental subduction and deeper slab breakoff than in the Proterozoic.


2005 ◽  
Vol 47 (8) ◽  
pp. 872-886 ◽  
Author(s):  
Li-Hung Lin ◽  
Pei-Ling Wang ◽  
Ching-Hua Lo ◽  
Chin-Ho Tsai ◽  
Bor-Ming Jahn

Sign in / Sign up

Export Citation Format

Share Document