scholarly journals The contribution of yield components in determining the productivity of winter wheat (Triticum aestivum L.)

2016 ◽  
Vol 69 (3) ◽  
Author(s):  
Elżbieta Harasim ◽  
Marian Wesołowski ◽  
Cezary Kwiatkowski ◽  
Paweł Harasim ◽  
Mariola Staniak ◽  
...  

<p>The aim of the present study was to determine the effect of different growth regulator rates and nitrogen fertilization levels on yield components and to evaluate their influence on winter wheat productivity. A field experiment with winter wheat ‘Muza’ was conducted at the Czesławice Experimental Farm, belonging to the University of Life Sciences in Lublin, Poland over the period 2004–2007. In this experiment, the effect of the studied factors on yield and its components was primarily dependent on weather conditions during the study period.</p><p>An increase in nitrogen rate from 100 to 150 kg ha<sup>−1</sup> in 2005 and 2007 had a significant effect on the increase in grain yield per unit area. In 2005, the grain yield rose through increased spike density (by 6.3%) and a higher number of grains per spike (by 1.6%). The 1000-grain weight decreased the grain yield per unit area (by 0.04 t ha<sup>−1</sup>). In 2007, the higher yield of wheat fertilized with nitrogen at a rate of 150 kg N ha<sup>−1</sup> was positively affected by all the three yield components. The statistical analysis of the results showed that the winter wheat grain yields were also significantly affected by the retardant rates applied depending on the year.</p>

2013 ◽  
Vol 66 (3) ◽  
pp. 67-72 ◽  
Author(s):  
Elżbieta Harasim ◽  
Marian Wesołowski

A field study was conducted in the period 2004–2007 at the Czesławice Experimental Farm, belonging to the University of Life Sciences in Lublin, on loess-derived grey brown podzolic soil (good wheat soil complex). This study determined the effect of two levels of nitrogen fertilization on yield and the basic quality traits of grain of the winter wheat cultivar ‘Muza’. The study results show the dependence of the grain quality characters mainly on variable weather conditions throughout the study period and to a lesser extent on the level of nitrogen fertilization. Good technological parameters were obtained in the seasons with low rainfall and high air temperature. The study also demonstrated that the higher rate of nitrogen tended to have a positive effect on total protein and wet gluten content, falling number, sedimentation value, and grain test weight. In spite of the lack of significant differences, the quality of gluten was found to decrease with the increasing rate of nitrogen.


1988 ◽  
Vol 68 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P. BULMAN ◽  
L. A. HUNT

Two field experiments were conducted to examine the relationships between tillering, spike number and grain yield in three winter wheat (Triticum aestivum L.) cultivars. Treatments were designed to manipulate both the production and survival of tillers, and to provide a high number of spikes per unit area. One experiment involved growth regulator treatments with cycocel and gibberellic acid while the second involved various rates of nitrogen. Grain yield was linearly related to total spike number over a range of 400–1200 spikes m−2 in a combined analysis over locations and years. When only spikes with at least nine fertile spikelets were included, a greater amount of the variability in yield could be explained, and differences among cultivars were related to the number of small, unproductive spikes. When locations and years were analyzed separately, little evidence was found for a diminishing response between grain yield and total spike number. Spike number was related to maximum tiller number in 1982, when winterkill and early spring conditions were unfavorable. Thus, although good fall tillering and winter survival contribute most to producing high spike numbers and grain yield, cultivars must also have the ability both to tiller rapidly in the spring and to sustain high-yielding tillers to provide sufficient compensation following winterkill.Key words: tillering, spikes, yield, wheat, nitrogen, regulators


2017 ◽  
Vol 18 (2) ◽  
pp. 131
Author(s):  
Danijela Kondić ◽  
Maja Bajić ◽  
Đurađ Hajder ◽  
Desimir Knežević

The sowing density of wheat is important for expression of number of spikes per unit area, grain yield as well as other yield components. The aim of this work is investigation of variability of grain yield and number of spikes per unit area influenced by different sowing densities under different environmental conditions. Three wheat genotypes NS 40, Prima and Nova Bosanka were studied at seven different sowing densities (384, 424, 451, 504, 544, 588 and 604 seeds m-2) with four replications on experimental plot of one m2 on field experiment in agro‒ecological conditions of Banja Luka during two successive growing seasons. In all studied wheat cultivars, the lowest number of spikes m-2 and the lowest grain yield were found on variant of lowest sowing density (384 seeds m-2), while the highest number of spikes m-2 and the highest grain yield were found on variant of 588 seeds m-2 in both years. The wheat genotype NS 40S had the highest number of spikes m-2, while Nova Bosanka had the lowest at all variants of sowing densities in both years. Mainly, at all variants of sowing densities, the highest values of analyzed traits were expressed in first year of experimental investigation. Depending of year and variant of sowing density the highest grain yield were found in NS 40 and Prima, while the lowest grain yield had Nova Bosanka in both years of experiment. In general, the recommended wheat sowing rates should be confirmed in the specific area of production and for the specific genotype.


2011 ◽  
Vol 50 (No. 7) ◽  
pp. 309-314 ◽  
Author(s):  
L. Ducsay ◽  
O. Ložek

Small-plot field experiments were established in the first decade of October at the Plant Breeding Station of Sl&aacute;dkovičovo-Nov&yacute; dvor with winter wheat (Triticum aestivum L.), variety Astella. There was investigated an effect of topdressing with nitrogen on the yield of winter wheat grain and its quality characteristics in the experiment. Nitrogenous fertilizers were applied at the growth phase of the 6<sup>th</sup> leaf (Zadoks = 29). Soil of the experimental stand was analysed for inorganic nitrogen content (N<sub>an</sub>) down to the depth of 0.6 m of soil profile. Productive nitrogen fertilizing rate was computed to ensure N<sub>an</sub> content in soil on the level of 120 and140 kg N/ha, respectively. Three various forms of fertilizers were examined, urea solution, ammonium nitrate with dolomite, and DAM-390. Different weather conditions statistically highly, significantly influenced grain yield in respective experimental years. Topdressing with nitrogen caused a statistically highly significant increase of grain yield in all fertilized variants ranging from +0.35 to +0.82 t/ha according to respective treatments. Average grain yield in unfertilised control variant represented 7.23 t/ha. Nitrogen nutrition showed a positive effect on the main macroelements offtake (N, P, K, Ca, Mg, S) by winter wheat grain in all fertilized variants. Nitrogen fertilizing to the level of 140 kg/ha N in soil positively influenced formation of wet gluten and crude protein with highest increment in variant 5 (solution of urea) representing +12.8 and +10.7%, respectively in comparison to control unfertilised variant as well as to variant 2 (solution of urea and fertilizing on the level of120&nbsp;kg N/ha) where increments represented +8.8 and 9.7%, respectively. Thousand-kernel weight, volume weight and portion of the first class grain were not markedly influenced by nitrogen fertilizing.


2000 ◽  
Vol 80 (4) ◽  
pp. 703-711 ◽  
Author(s):  
D. Spaner ◽  
A. G. Todd ◽  
D. B. McKenzie

Livestock farmers in Newfoundland presently import most of their feed grain, and local self-sufficiency in grain production is a desirable long-term goal. The overall objective of this work was to refine our understanding of winter wheat (Triticum aestivum L.) production in Newfoundland, with the aim of improving present cropping recommendations. We conducted trials near St. John's in 1998 and 1999 to examine the effect of seeding rate and topdress ammonium nitrate (N) fertilization rate on Borden winter wheat yield and yield components. We also conducted four seeding date trials in the same region. Optimum-treatment grain yields in our six trials ranged from 2.76 to 5.39 t ha−1. In years of variable winter kill, increasing seeding rate up to 450 seeds m−2 increased spikes m−2 at harvest, resulting in increased grain yield. Seeding rate, however, was not as important as N fertilization in maximizing grain yield. Increasing topdress fertilization to 60 kg N ha–1 increased spikes m–2 at harvest in years of variable winter kill, resulting in greater grain yield. In years of high winter survival, the main source of higher grain yield levels (through higher N application rates) was not achieved through greater spikes m−2 at harvest, but rather through an increase in kernel weight. Optimum grain yields occurred at seeding rates of 400 ± 50 seeds m−2, and at topdress fertilizer applications up to a rate of at least 30 kg N ha−1. Given the results of our seeding date experiments, in conjunction with previously developed climatic models, we now consider the optimum seeding date for the eastern region of Newfoundland to be August 31. Key words: Yield component analysis, two-dimensional partitioning, Triticum aestivum L., ammonium nitrate


Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


2014 ◽  
Vol 11 (8) ◽  
pp. 2287-2294 ◽  
Author(s):  
Z. L. Cui ◽  
L. Wu ◽  
Y. L. Ye ◽  
W. Q. Ma ◽  
X. P. Chen ◽  
...  

Abstract. Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the trade-off between high yields and GHG emissions in intensive agricultural production is not well understood. Here, we hypothesize that there exists a mechanistic relationship between wheat grain yield and GHG emission, and that could be transformed into better agronomic management. A total 33 sites of on-farm experiments were investigated to evaluate the relationship between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive winter wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. Compared to the CP system, grain yield was 39% (2352 kg ha−1) higher in the HY system, while GHG emissions increased by only 10%, and GHG emission intensity was reduced by 21%. The current intensive winter wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6050 kg ha−1 and 4783 kg CO2 eq ha−1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 26% (6077 kg ha−1, and 3555 kg CO2 eq ha−1). Further, the HY system was found to increase grain yield by 39% with a simultaneous reduction in GHG emissions by 18% (8429 kg ha−1, and 3905 kg CO2 eq ha−1, respectively). In the future, we suggest moving the trade-off relationships and calculations from grain yield and GHG emissions to new measures of productivity and environmental protection using innovative management technologies.


2014 ◽  
Vol 24 (1-2) ◽  
pp. 29-37 ◽  
Author(s):  
TA Qurashi ◽  
MA Salam ◽  
M Jannat ◽  
MG Rabbani

An experiment was carried out at Bangladesh Agricultural University, Mymensingh to evaluate the effect of urea super granule (USG) as a source of nitrogen on the yield and yield components of transplant Aman rice cv. BRRI dhan39, BRRI dhan46 and BINA dhan7. Five levels of N (viz., 0, 60, 120 kg ha-1 as prilled urea and 60 and 120 kg ha-1 as USG) were taken as experimental treatments. The experiment was laid out in a randomized complete block design with three replications. Plant height, effective tillers hill-1, grains panicle-1 and grain yield varied significantly due to different cultivars. All the yield and yield components except 1000-grain weight were influenced significantly by the levels of nitrogen fertilizer. The highest grain yield (4.82 t ha-1) was recorded in BINA dhan7 and the lowest one (4.30 t ha-1) was recorded in BRRI dhan39. Nitrogen @ 120 kg ha-1 as USG performed the best among the treatments in respect of yield and yield components of rice. The highest grain yield (5.46t ha-1) was obtained from BINA dhan7 with 120 kg N ha-1 as USG which was statistically identical with 60 kg N ha-1 as USG. A considerable amount (31.25%) of prilled urea (PU) nitrogen could be saved by using USG. It may be concluded that USG could be used as N management to achieve better nitrogen use efficiency in reducing N loss than the PU.DOI: http://dx.doi.org/10.3329/pa.v24i1-2.19095 Progress. Agric. 24(1&2): 29 - 37, 2013


Zuriat ◽  
2015 ◽  
Vol 18 (2) ◽  
Author(s):  
Aslim Rasyad ◽  
Azwir Anhar

Genotype by environment (GE) interaction and genotype stability of a trait in rice (Oryza sativa L.) are very important for plant breeders in making decision regarding the development and evaluation of new cultivars as well as for farmers in selecting suitable cultivars to be planted for commercial purpose. Yield components including panicles number plant–1, number of grains panicle–1, 1000-grain weight, and grain yield of five locally adapted cultivars of rice were evaluated at three locations in West Sumatera. The data were used to determine GE interaction variance components and stability of the traits. There were significant effects of locations on yield and some yield components except number of panicles plant–1. The cultivars differed significantly in all yield components but not in grain yield. The influence of GE interaction was highly significant on all yield components and grain yield. The magnitude of GE interaction variance component was greater than that of location for all traits. These data suggested that genotypes performed differently among the locations and were not stable with respect to the locations, so that farmers should select a suitable cultivar to be grown in the area of production.


2013 ◽  
pp. 101-105
Author(s):  
Enikő Vári

The experiments were carried out at the Látókép experimental station of the University of Debrecen on chernozem soil in a long term winter wheat experiment in the season of 2011 and 2012 in triculture (pea-wheat-maize) and biculture (wheat-maize) at three fertilisation levels (control, N50+P35K40, N150+P105K120). Two different cropyears were compared (2011 and 2012). The research focused on the effects of forecrop and fertilisation on the Leaf Area Index, SPAD values and the amount of yield in two different cropyears. We wanted to find out how the examined parameters were affected by the cropyear and what the relationship was between these two parameters and the changes of the amount of yield. Examining the effects of growing doses of fertilizers applied, results showed that yields increased significantly in both rotations until the N150+PK level in 2011 and 2012. By comparing the two years, results show that in 2011 there was a greater difference in yields between the rotations (7742 kg ha-1 at N150+PK in the biculture and 9830 kg ha-1 at N150+PK in the triculture). Though wheat yields following peas were greater in 2012, results equalized later on at N150+PK levels (8109–8203 kg ha-1). Due to the favorable agrotechnical factors, the leaf and the effects of the treatments grown to a great extent in 2011, while in 2012 the differences between treatments were moderate. Until the N150+PK level, nitrogen fertilisation had a notable effect on the maximum amount of SPAD values (59.1 in the case of the biculture and 54.0 in the triculture). The highest SPAD values were measured at the end of May (during the time of flowering and grain filling) in the biculture. In the triculture, showed high SPAD values from the beginning. The same tendency could be observed in the 2012 cropyear, although increasing doses of fertilizers resulted in higher SPAD values until N150+PK level only from the second measurement. Maximum SPAD values were reached at the end of May in both crop rotation system


Sign in / Sign up

Export Citation Format

Share Document