Digoxigenin-Labeled Probe-Based Colony Blotting Assay for Rapid Quantification of Salmonella Serovars in Seafood and Water

2012 ◽  
Vol 95 (6) ◽  
pp. 1652-1655 ◽  
Author(s):  
Rakesh Kumar ◽  
K V Lalitha

Abstract A non-radio-labeled probe-based detection method was developed for rapid enumeration of Salmonella in seafood and water samples. A Salmonella-specific invA gene probe was developed using a digoxigenin-based non-radio labeling assay, which was evaluated with naturally contaminated seafood and water samples. The probe-based technique was further compared with the quantitative PCR assay. The method was specific for detection of different Salmonella serovars without any nonspecific hybridization with other Salmonella-related Enterobacteriaceae. The optimum labeling efficiency was determined for the labeled probe, and 10 pg/μL probe concentration was observed to be most efficient for detection of Salmonella colonies on nylon membrane. Quantification of Salmonella in naturally contaminated seafood and water samples (n = 21) was in the range 10–102 CFU/mL. The assay successfully quantified Salmonella in spiked seafood and water samples in the presence of background flora, and the entire assay was completed within 48 h. The probe-based assay was further evaluated with real-time PCR, and results showed that the assay was comparable to real-time PCR assay. Thus, this probe-based assay can be a rapid, useful, and alternative technique for quantitative detection of Salmonella in food, feed, and water samples.

2007 ◽  
Vol 41 (1) ◽  
pp. 118-126 ◽  
Author(s):  
Jonas Behets ◽  
Priscilla Declerck ◽  
Yasmine Delaedt ◽  
Lieve Verelst ◽  
Frans Ollevier

2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S140-S140
Author(s):  
A Kalam

Abstract Introduction/Objective Diarrhea is a major source of morbidity and mortality in low-income and middle-income countries. In underdeveloped countries, diseases caused by viruses identified in environmental samples cause major health problems. Little knowledge about the frequency and pattern of viral contamination of drinking water sources in these resource-poor settings. Adenovirus which causes watery diarrhea, particular has been recognized as important causal pathogen. Adenovirus remains a global threat to public health and an indicator of inequity and lack of social development. Tap water samples from coastal sites in Karachi between 2019 and 2020 over a period of 11 months. The total of 40 tap water sample was examined for infectious Adenovirus by a real time polymerase chain reaction (PCR) amplification. Methods/Case Report This Pilot study is conducted on tap water samples from Karachi Pakistan, n=40 are processed. Extraction of nucleic acid from all filtered water samples collected with Sterivex filter units by using Qiagen DNeasy Power Water Sterivex Kit. As per the manufacturer’s instruction. Phocine herpesvirus(PhHV) is added as an external positive control to monitor the efficiency of nucleic acid extraction and amplification. TaqMan Universal PCR Master Mix (Thermo Fisher Scientific) is being used in probe based real time PCR assay,the below 35 Ct value is considered as a positive sample. Results (if a Case Study enter NA) Results showed the total of 37.7% of the sources were positive for adenovirus.The level of viral contamination was moderate to high. Conclusion The results has been showed that no seasonal pattern for viral contaminations was found after samples obtained during the dry and wet seasons were compared. Further the Real time PCR assay increases the sensitivity and provides the high resolution of pathogen detection.


2007 ◽  
Vol 21 (5-6) ◽  
pp. 368-378 ◽  
Author(s):  
Anna Casabianca ◽  
Caterina Gori ◽  
Chiara Orlandi ◽  
Federica Forbici ◽  
Carlo Federico Perno ◽  
...  

2016 ◽  
Vol 12 (1) ◽  
Author(s):  
Gregorio Iraola ◽  
Ruben Pérez ◽  
Laura Betancor ◽  
Ana Marandino ◽  
Claudia Morsella ◽  
...  

2005 ◽  
Vol 71 (7) ◽  
pp. 3433-3441 ◽  
Author(s):  
M. A. Yáñez ◽  
C. Carrasco-Serrano ◽  
V. M. Barberá ◽  
V. Catalán

ABSTRACT A new real-time PCR assay was developed and validated in combination with an immunomagnetic separation system for the quantitative determination of Legionella pneumophila in water samples. Primers that amplify simultaneously an 80-bp fragment of the dotA gene from L. pneumophila and a recombinant fragment including a specific sequence of the gyrB gene from Aeromonas hydrophila, added as an internal positive control, were used. The specificity, limit of detection, limit of quantification, repetitivity, reproducibility, and accuracy of the method were calculated, and the values obtained confirmed the applicability of the method for the quantitative detection of L. pneumophila. Moreover, the efficiency of immunomagnetic separation in the recovery of L. pneumophila from different kinds of water was evaluated. The recovery rates decreased as the water contamination increased (ranging from 59.9% for distilled water to 36% for cooling tower water), and the reproducibility also decreased in parallel to water complexity. The feasibility of the method was evaluated by cell culture and real-time PCR analysis of 60 samples in parallel. All the samples found to be positive by cell culture were also positive by real-time PCR, while only eight samples were found to be positive only by PCR. Finally, the correlation of both methods showed that the number of cells calculated by PCR was 20-fold higher than the culture values. In conclusion, the real-time PCR method combined with immunomagnetic separation provides a sensitive, specific, and accurate method for the rapid quantification of L. pneumophila in water samples. However, the recovery efficiency of immunomagnetic separation should be considered in complex samples.


Sign in / Sign up

Export Citation Format

Share Document