Mode-I and Mode-II Crack Tip Fields in Implicit Gradient Elasticity Based on Laplacians of Stress and Strain. Part II: Asymptotic Solutions
We develop asymptotic solutions for near-tip fields of Mode-I and Mode-II crack problems and for model responses reflected by implicit gradient elasticity. Especially, a model of gradient elasticity is considered, which is based on Laplacians of stress and strain and turns out to be derivable as a particular case of micromorphic (microstrain) elasticity. While the governing model equations of the crack problems are developed in Part I, the present paper addresses analytical solutions for near-tip fields by using asymptotic expansions of Williams’ type. It is shown that for the assumptions made in Part I, the model does not eliminiate the well-known singularities of classical elasticity. This is in contrast to conclusions made elsewhere, which rely upon different assumptions. However, there are significant differences in comparison to classical elasticity, which are discussed in the paper. For instance, in the case of Mode-II loading conditions, the leading terms of the asymptotic solution for the components of the double stress exhibit the remarkable property that they include two stress intensity factors.