scholarly journals Compressive Strength of Concrete with Nano Cement

Author(s):  
Jemimah Carmichael Milton ◽  
Prince Arulraj Gnanaraj

Nano technology plays a very vital role in all the areas of research. The incorporation of nano materials in concrete offers many advantages and improves the workability, the strength and durability properties of concrete. In this study an attempt has been made to carry out an experimental investigation on concrete in which cement was replaced with nano sized cement. Ordinary Portland cement of 53 grade was ground in a ball grinding mill to produce nano cement. The characterization of nano cement was studied using Scanning Electron Microscope (SEM), Brunauer Emmett–Teller (BET), Energy Dispersive X ray microanalysis (EDAX) and Fourier Transform Infrared Spectroscopy (FTIR). From the characterization studies, it was confirmed that particles were converted to nano size, the specific surface area increased and the chemical composition remained almost the same. The properties of cement paste with and without nano cement were found. For the experimental study, cement was replaced with 10%, 20%, 30%, 40% and 50% of nano cement. Cement mortar of ratio 1:3 and concrete of grades M20, M30, M40 and M50 were used. Compressive strength of cement mortar and concrete with different percentages of nano cement was found. The cement mortar was also subjected to micro structural study. It was found that the strength increased even up to the replacement level of 50%. Further increase in the replacement is not possible since the addition of nano cement reduces the initial and final setting time of cement paste. At 50% replacement level, the initial setting time got reduced to 30 minutes which the least permitted value as per IS 12269: 2013. The increase in strength was due to the fact that nano cement acts not only as a filler material but also the reactivity increased due to the higher specific surface area. The SEM image shows the formation of additional C-S-H gel. The percentage increase in compressive strength was found to increase up to 32%. The workability of concrete with nano cement was found to be significantly more than that of the normal cement concrete.

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Yanping Sheng ◽  
Bin Xue ◽  
Haibin Li ◽  
Yunyan Qiao ◽  
Huaxin Chen ◽  
...  

A new type of alkali-free liquid accelerator for shotcrete was prepared. Specifically, the setting time and strength and shrinkage performance of two kinds of Portland cement with the accelerator were fully investigated. Moreover, the accelerating mechanism of alkali-free liquid accelerator and the hydration process of the shotcrete with accelerator were explored. Results show that alkali-free liquid accelerator significantly shortened the setting time of cement paste, where the initial setting time of cement paste with 8 wt% of the accelerator was about 3 min and the final setting time was about 7 min. Compressive strength at 1 day of cement mortar with the accelerator could reach 23.4 MPa, which increased by 36.2% compared to the strength of cement mortar without the accelerator, and the retention rate of 28-day compressive strength reached 110%. In addition, the accelerator still shows a good accelerating effect under low temperature conditions. However, the shrinkage rate of the concrete increased with the amount of the accelerator. 5~8% content of accelerator is recommended for shotcrete in practice. XRD and SEM test results showed that the alkali-free liquid accelerator promoted the formation of ettringite crystals due to the increase of Al3+ and SO42- concentration.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1611
Author(s):  
Gintautas Skripkiūnas ◽  
Asta Kičaitė ◽  
Harald Justnes ◽  
Ina Pundienė

The effect of calcium nitrate (CN) dosages from 0 to 3% (of cement mass) on the properties of fresh cement paste rheology and hardening processes and on the strength of hardened concrete with two types of limestone-blended composite cements (CEM II A-LL 42.5 R and 42.5 N) at different initial (two-day) curing temperatures (−10 °C to +20 °C) is presented. The rheology results showed that a CN dosage up to 1.5% works as a plasticizing admixture, while higher amounts demonstrate the effect of increasing viscosity. At higher CN content, the viscosity growth in normal early strength (N type) cement pastes is much slower than in high early strength (R type) cement pastes. For both cement-type pastes, shortening the initial and final setting times is more effective when using 3% at +5 °C and 0 °C. At these temperatures, the use of 3% CN reduces the initial setting time for high early strength paste by 7.4 and 5.4 times and for normal early strength cement paste by 3.5 and 3.4 times when compared to a CN-free cement paste. The most efficient use of CN is achieved at −5 °C for compressive strength enlargement; a 1% CN dosage ensures the compressive strength of samples at a −5 °C initial curing temperature, with high early strength cement exceeding 3.5 MPa but being less than the required 3.5 MPa in samples with normal early strength cement.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2092652 ◽  
Author(s):  
Haiyan Li ◽  
Xianping Wang ◽  
Xuemao Guan ◽  
Dinghua Zou

In this study, LiAl-layered double hydroxides Lithium aluminum hydrotalcite (LiAl-LDH) with different specific surface area were prepared by the separate nucleation and aging steps (SNAS) method and then were employed to prepare calcium sulfoaluminate cement-based grouting material (CBGM) paste. The influence of LiAl-LDH slurries on fresh and hardened properties of the CBGM paste was investigated in terms of fluidity, stability, setting time, and compressive strength. Additionally, the hydration process and hydration products of the CBGM paste were characterized by hydration heat, X-ray diffraction, differential thermal analysis–thermogravimetry, and Fourier transform infrared analyses. The acquired results illustrated that LiAl-LDH with larger specific surface area led to a faster hydration rate at early age, a lower fluidity, a shorter setting time, and a higher stability. Furthermore, due to the crystal nucleation effect, the addition of LiAl-LDH slurries did not cause a new phase to form but changed the morphology and increased the amount of hydration products, yielding higher compressive strength.


2014 ◽  
Vol 621 ◽  
pp. 35-38 ◽  
Author(s):  
Rahimah Embong ◽  
Andri Kusbiantoro

This paper studies the effect of sodium chloride as the additive component in cement paste. Sodium chloride was included at 0.5%, 1%, 1.5%, and 2% by weight of cement content. Analysis on the performance of this reagent was conducted via setting time, compressive strength, and porosity test. Based on the setting time analysis, the inclusion of sodium chloride can extend the initial setting time of cement paste up to 24.91% longer than control specimen. Obstruction on the formation of calcium silicate hydrate gel by sodium and chloride ion was one of the possible causes to this phenomenon. Acceleration on the compressive strength development by sodium chloride was also detected. It appears that sodium chloride was able to de-flocculate the coagulated cement particles and reduced the viscosities of cement slurries; hence resulted in faster early hydration process.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhixin Li ◽  
Kaidong Xu ◽  
Jiahui Peng ◽  
Jina Wang ◽  
Jianwu Zhang ◽  
...  

Influence of the heating temperature and fineness on the hydration and mechanical property of recycled gypsum plaster was investigated to find the suitable heating temperature and fineness. According to the results, the setting time of recycled gypsum plaster increased with the increase of heating temperature, and the mechanical strength increased first and then decreased at a temperature of 165°C. Therefore, the suitable heating temperature was 165°C, and at this time, the initial setting time and final setting time were 8 min and 12.5 min, respectively, which met the requirements of the Chinese standard of GB/T 9776-2008. The strength of recycled gypsum plaster increased with the increase of specific surface area, and the low water to plaster ratio and high strength were achieved when the specific surface area was 1526 m2/kg. Therefore, it can be concluded that the suitable heating temperature was 165°C and the suitable specific surface area was 1526 m2/kg considering the properties and economics of recycled gypsum plaster.


2014 ◽  
Vol 525 ◽  
pp. 573-579
Author(s):  
Tian Yong Huang ◽  
Dong Min Wang ◽  
Ze Liu

It is studied the influence of triethanolamine (TEA), diethylenetriamine (DEA), Triisopropanolamine (TIPA), aminoethyl ethanolamine (AE), and polyvinyl alcohol ammonium phosphate (PAAP) at different dosages on the properties of fresh and hardened cement pastes and mortars prepared by Portland cement, including standard consistency water, setting time, the cement paste fluidity, and compressive and flexural strength. It is showed that the high polarity alcohol amine molecules exhibit strong chemical interactions with cement matrix, which are reflected in modified macroscopic properties of the cement system. All alcohol amine admixtures increased the standard consistency water and decreased cement paste fluidity of Portland cement. TEA significantly shortened the initial setting time and final setting time of Portland cement. On the other hand, TIPA, DEA, AE and PAAP extended the initial setting time of cement but shortened the cement final setting time. All alcohol amine admixtures except TIPA at 0.2 and 0.5 dosage increased the compressive and flexural strength of the Portland cement mortars at 3 days. Especially when the dosage of PAAP is 1, the compressive strength of the Portland cement mortars at 3 days is increased 10.5MPa. All alcohol amine admixtures except AE at 0.2 and 0.5 dosage increase the compressive and flexural strength of the Portland cement mortars at 28 days, Especially when the dosage of TIPA is 1, the compressive strength of the Portland cement mortars at 28 days is increased 8.8MPa.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 163 ◽  
Author(s):  
Bokyeong Lee ◽  
Gyuyong Kim ◽  
Jeongsoo Nam ◽  
Kyehyouk Lee ◽  
Gyeongtae Kim ◽  
...  

This study focused on the quick initial setting time and the expansion strain that occurs during the early aging of α-calcium sulfate hemihydrate (αHH) and examined the setting, compressive strength, and shrinkage strain of αHH-replaced cement mortar. The results show that the initial setting time significantly decreased with an increase in the αHH replacement ratio. Drastic occurrence of ettringite was observed early in the aging of cement mortar when αHH was substituted into the cement; however, the ettringite was not converted to monosulfate with increasing age and thus was not favorable for the development of the compressive strength. When αHH was substituted into cement, using Portland blast-furnace slag cement (PSC) was more advantageous than using ordinary Portland cement (OPC) for the development of the compressive strength. Meanwhile, the expansion of early age αHH can decrease the shrinkage strain of cement mortar. The generation of ettringite is more effective when αHH is substituted into PSC than into OPC and is thus more effective in suppressing the shrinkage strain.


2020 ◽  
Vol 4 (1) ◽  
pp. 61
Author(s):  
Hardjono Hardjono ◽  
Cucuk Evi Lusiani ◽  
Agung Ari Wibowo ◽  
Mochammad Agung Indra Iswara

Produksi semen setengah jadi (clinker) membutuhkan energi yang tinggi sehingga menggunakan batu bara dalam jumlah besar. Hal ini menyebabkan biaya produksi dari pabrik semen juga tinggi. Kebutuhan energi yang besar untuk menghasilkan clinker tersebut dapat dikurangi dengan menambahan blast furnace slag sebagai campuran pembuatan semen. Campuran clinker dapat menghasilkan produk semen yang memiliki waktu pengikatan dan kuat tekan sesuai SNI. Pengaruh penambahan blast furnace slag sebagai campuran clinker terhadap waktu pengikatan dan kuat tekan semen dapat dioptimalkan dengan response surface methodology (RSM) menggunakan Central Composite Design (CCD). Optimasi dengan menggunakan RSM bertujuan untuk mengetahui kondisi optimum pada penambahan blast furnace slag dan clinker terhadap variabel respon berupa waktu pengikatan awal, waktu pengikatan akhir, dan kuat tekan. Hasil uji ANOVA dan analisis response surface menunjukkan bahwa penambahan blast furnace slag sebagai campuran dalam pembuatan semen memberikan pengaruh yang signifikan terhadap waktu pengikatan awal, waktu pengikatan akhir, dan kuat tekan. Penambahan 5% blast furnace slag dengan 92,5% clinker pada campuran clinker dan gypsum merupakan kondisi optimum yang memberikan pengaruh signifikan terhadap variabel respon.The production of clinker consumes high energy and causes high production cost of cement industry. It can be reduced by adding blast furnace slag as a mixture in cement production. The blast furnace slag - clinker mixture can produce cement with setting time and compressive strength according to SNI. The effect of the addition of blast furnace slag as a clinker mixture to the setting time and compressive strength of cement can be optimized by response surface methodology (RSM) using Central Composite Design (CCD). Optimization by using RSM aims to determine the optimum condition of the blast furnace slag – clinker mixture to the initial setting time, final setting time, and compressive strength. ANOVA test results and response surface analysis show that the addition of blast furnace slag into the cement mixture has a significant influence on the initial setting time, final setting time, and compressive strength. The addition of  5% blast furnace slag with  92.5% clinker in the mixture of clinker and gypsum is the optimum condition which gives a significant effect on the response variable.


Sign in / Sign up

Export Citation Format

Share Document