Characterization of Brain Stroke Using Image and Signal Processing Techniques
Cross-sectional imaging approaches play a key role in assessing bleeding brain injuries. Doctors commonly determine bleeding size and severity in CT and MRI. Separating and identifying artifacts is extremely important in processing medical images. Image and signal processing are used to classify tissues within images closely linked to edges. In CT images, a subjective process takes a stroke ‘s manual contour with less precision. This chapter presents the application of both image and signal processing techniques in the characterization of Brain Stroke field. This chapter also summarizes how to characterize the brain stroke using different image processing algorithms such as ROI based segmentation and watershed methods.