scholarly journals Management of Software-Defined Networking Powered by Artificial Intelligence

2021 ◽  
Author(s):  
Jehad Ali ◽  
Byeong-hee Roh

Separating data and control planes by Software-Defined Networking (SDN) not only handles networks centrally and smartly. However, through implementing innovative protocols by centralized controllers, it also contributes flexibility to computer networks. The Internet-of-Things (IoT) and the implementation of 5G have increased the number of heterogeneous connected devices, creating a huge amount of data. Hence, the incorporation of Artificial Intelligence (AI) and Machine Learning is significant. Thanks to SDN controllers, which are programmable and versatile enough to incorporate machine learning algorithms to handle the underlying networks while keeping the network abstracted from controller applications. In this chapter, a software-defined networking management system powered by AI (SDNMS-PAI) is proposed for end-to-end (E2E) heterogeneous networks. By applying artificial intelligence to the controller, we will demonstrate this regarding E2E resource management. SDNMS-PAI provides an architecture with a global view of the underlying network and manages the E2E heterogeneous networks with AI learning.

Telecom IT ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 50-55
Author(s):  
D. Saharov ◽  
D. Kozlov

The article deals with the СoAP Protocol that regulates the transmission and reception of information traf-fic by terminal devices in IoT networks. The article describes a model for detecting abnormal traffic in 5G/IoT networks using machine learning algorithms, as well as the main methods for solving this prob-lem. The relevance of the article is due to the wide spread of the Internet of things and the upcoming update of mobile networks to the 5g generation.


2021 ◽  
Vol 19 (3) ◽  
pp. 163
Author(s):  
Dušan Bogićević

Edge data processing represents the new evolution of the Internet and Cloud computing. Its application to the Internet of Things (IoT) is a step towards faster processing of information from sensors for better performance. In automated systems, we have a large number of sensors, whose information needs to be processed in the shortest possible time and acted upon. The paper describes the possibility of applying Artificial Intelligence on Edge devices using the example of finding a parking space for a vehicle, and directing it based on the segment the vehicle belongs to. Algorithm of Machine Learning is used for vehicle classification, which is based on vehicle dimensions.


2021 ◽  
pp. 307-327
Author(s):  
Mohammed H. Alsharif ◽  
Anabi Hilary Kelechi ◽  
Imran Khan ◽  
Mahmoud A. Albreem ◽  
Abu Jahid ◽  
...  

2019 ◽  
Vol 38 (1) ◽  
pp. 165-179 ◽  
Author(s):  
Ying Ma ◽  
Kang Ping ◽  
Chen Wu ◽  
Long Chen ◽  
Hui Shi ◽  
...  

Purpose The Internet of Things (IoT) has attracted a lot of attention in both industrial and academic fields for recent years. Artificial intelligence (AI) has developed rapidly in recent years as well. AI naturally combines with the Internet of Things in various ways, enabling big data applications, machine learning algorithms, deep learning, knowledge discovery, neural networks and other technologies. The purpose of this paper is to provide state of the art in AI powered IoT and study smart public services in China. Design/methodology/approach This paper reviewed the articles published on AI powered IoT from 2009 to 2018. Case study as a research method has been chosen. Findings The AI powered IoT has been found in the areas of smart cities, healthcare, intelligent manufacturing and so on. First, this study summarizes recent research on AI powered IoT systematically; and second, this study identifies key research topics related to the field and real-world applications. Originality/value This research is of importance and significance to both industrial and academic fields researchers who need to understand the current and future development of intelligence in IoT. To the best of authors’ knowledge, this is the first study to review the literature on AI powered IoT from 2009 to 2018. This is also the first literature review on AI powered IoT with a case study of smart public service in China.


Design Issues ◽  
2020 ◽  
Vol 36 (4) ◽  
pp. 33-44 ◽  
Author(s):  
Elisa Giaccardi ◽  
Johan Redström

Are we reaching the limits of what human-centered and user-centered design can cope with? Developing new design methodologies and tools to unlock the potentials of data technologies such as the Internet of Things, Machine Learning and Artificial Intelligence for the everyday job of design is necessary but not sufficient. There is now a need to fundamentally question what happens when human-centered design is unable to effectively give form to technology, why this might be the case, and where we could look for alternatives.


2021 ◽  
Vol 3 (3) ◽  
pp. 128-145
Author(s):  
R. Valanarasu

Recently, IoT is referred as a descriptive term for the idea that everything in the world should be connected to the internet. Healthcare and social goods, industrial automation, and energy are just a few of the areas where the Internet of Things applications are widely used. Applications are becoming smarter and linked devices are enabling their exploitation in every element of the Internet of Things [IoT]. Machine Learning (ML) methods are used to improve an application's intelligence and capabilities by analysing the large amounts of data. ML and IoT have been used for smart transportation, which has gained the increasing research interest. This research covers a range of Internet of Things (IoT) applications that use suitable machine learning techniques to enhance efficiency and reliability in the intelligent automation sector. Furthermore, this research article examines and identifies various applications such as energy, high-quality sensors associated, and G-map associated appropriate applications for IoT. In addition to that, the proposed research work includes comparisons and tabulations of several different machine learning algorithms for IoT applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Mohamed Ali Mohamed ◽  
Ibrahim Mahmoud El-henawy ◽  
Ahmad Salah

Sensors, satellites, mobile devices, social media, e-commerce, and the Internet, among others, saturate us with data. The Internet of Things, in particular, enables massive amounts of data to be generated more quickly. The Internet of Things is a term that describes the process of connecting computers, smart devices, and other data-generating equipment to a network and transmitting data. As a result, data is produced and updated on a regular basis to reflect changes in all areas and activities. As a consequence of this exponential growth of data, a new term and idea known as big data have been coined. Big data is required to illuminate the relationships between things, forecast future trends, and provide more information to decision-makers. The major problem at present, however, is how to effectively collect and evaluate massive amounts of diverse and complicated data. In some sectors or applications, machine learning models are the most frequently utilized methods for interpreting and analyzing data and obtaining important information. On their own, traditional machine learning methods are unable to successfully handle large data problems. This article gives an introduction to Spark architecture as a platform that machine learning methods may utilize to address issues regarding the design and execution of large data systems. This article focuses on three machine learning types, including regression, classification, and clustering, and how they can be applied on top of the Spark platform.


2021 ◽  
Vol 31 (1) ◽  
pp. 1-14
Author(s):  
Firas Mohammed Aswad ◽  
Ali Noori Kareem ◽  
Ahmed Mahmood Khudhur ◽  
Bashar Ahmed Khalaf ◽  
Salama A. Mostafa

Abstract Floods are one of the most common natural disasters in the world that affect all aspects of life, including human beings, agriculture, industry, and education. Research for developing models of flood predictions has been ongoing for the past few years. These models are proposed and built-in proportion for risk reduction, policy proposition, loss of human lives, and property damages associated with floods. However, flood status prediction is a complex process and demands extensive analyses on the factors leading to the occurrence of flooding. Consequently, this research proposes an Internet of Things-based flood status prediction (IoT-FSP) model that is used to facilitate the prediction of the rivers flood situation. The IoT-FSP model applies the Internet of Things architecture to facilitate the flood data acquisition process and three machine learning (ML) algorithms, which are Decision Tree (DT), Decision Jungle, and Random Forest, for the flood prediction process. The IoT-FSP model is implemented in MATLAB and Simulink as development platforms. The results show that the IoT-FSP model successfully performs the data acquisition and prediction tasks and achieves an average accuracy of 85.72% for the three-fold cross-validation results. The research finding shows that the DT scores the highest accuracy of 93.22%, precision of 92.85, and recall of 92.81 among the three ML algorithms. The ability of the ML algorithm to handle multivariate outputs of 13 different flood textual statuses provides the means of manifesting explainable artificial intelligence and enables the IoT-FSP model to act as an early warning and flood monitoring system.


Sign in / Sign up

Export Citation Format

Share Document