Properties of Finite-Difference Operators for the Steady-Wave Problem
A feature of most implementations of Dawson's boundary-integral method for steady free-surface flows is the use of upstream finite-difference operators for the streamwise derivative occurring in the linearized free-surface boundary condition. An algebraic analysis of a family of candidate operators reveals their essential damping and dispersion error characteristics, which correlate well with their observed performance in two-dimensional example flows. Some new operators are found which perform somewhat better than Dawson's, but the general outlook for accurate results using difference operators is nevertheless bleak. It is shown that the calculation necessarily diverges as panel size is reduced, and a breakdown at higher speeds is also inevitable. More promise appears to lie in satisfying the radiation condition by several alternative ways, which are briefly discussed.