scholarly journals Self-incompatibility allele identification in Ukrainian sweet cherry (Prunus avium L.) cultivars

2018 ◽  
Vol 15 (2) ◽  
pp. 150-158
Author(s):  
Ya. I. Ivanovych ◽  
N. V. Tryapitsyna ◽  
K. M. Udovychenko ◽  
R. A. Volkov

Aim. Ukrainian breeders have created a large number of sweet cherry cultivars, which still remain almost unexplored at the molecular level. The aim of our study was to identify the self-incompatibility alleles (S-alleles) in Ukrainian sweet cherry cultivars and landraces, and to elucidate, to which cross-incompatibility group the cultivars belong. Methods. The PCR was conducted using consensus primers to the first and second introns of S-RNAse gene and to the single intron of SFB gene. The electrophoretic analysis of the PCR products of the second intron of S-RNAse was carried out in agarose gel, whereas detection of fluorescently labeled DNA fragments of the first S-RNAse intron and the SFB intron was performed using a genetic analyzer. Results. The S-alleles of 25 Ukrainian sweet cherry cultivars and 10 landraces were identified. The S-alleles frequencies and affiliation of cultivars and landraces to the groups of cross-incompatibility were determined. The obtained data can be used in breeding programs and by planning of industrial plantings. Conclusions. In the study, 12 different S-alleles and 79 S-haplotypes were identified. The S1, S3, S4, S5, S6 and S9 alleles are the most widespread among Ukrainian sweet cherry cultivars and landraces. The high frequencies of S5 and especially of S9 alleles are characteristic for the Ukrainian cultivars and distinguish them from other European ones. For the Ukrainian sweet cherry cultivars, the XXXVII (S5S9) cross-incompatibility group appeared to be the most numerous.Keywords: Ukrainian sweet cherry cultivars, S-locus, Sgenotypes, self- and cross-incompatibility, Prunus avium.

Author(s):  
Agnes Kivistik ◽  
Liina Jakobson ◽  
Kersti Kahu ◽  
Kristiina Laanemets

AbstractThe pollination of self-incompatible diploid sweet cherry is determined by the S-locus alleles. We resolved the S-alleles of 50 sweet cherry cultivars grown in Estonia and determined their incompatibility groups, which were previously unknown for most of the tested cultivars. We used consensus primers SI-19/20, SI-31/32, PaConsI, and PaConsII followed by allele-specific primers and sequencing to identify sweet cherry S-genotypes. Surprisingly, 48% (24/50) of the tested cultivars, including 17 Estonian cultivars, carry the rare S-allele S17, which had initially been described in wild sweet cherries in Belgium and Germany. The S17-allele in Estonian cultivars could originate from ‘Leningradskaya tchernaya’ (S6|S17), which has been extensively used in Estonian sweet cherry breeding. Four studied cultivars carrying S17 are partly self-compatible, whereas the other 20 cultivars with S17 have not been reported to be self-compatible. The recommended pollinator of seven self-incompatible sweet cherries is of the same S-genotype, including four with S17-allele, suggesting heritable reduced effectiveness of self-infertility. We classified the newly genotyped sweet cherry cultivars into 15 known incompatibility groups, and we proposed four new incompatibility groups, 64–67, for S-locus genotypes S3|S17, S4|S17, S5|S17, and S6|S17, respectively, which makes them excellent pollinators all across Europe. Alternatively, the frequency of S17 might be underestimated in Eastern European populations and some currently unidentified sweet cherry S-alleles might potentially be S17.


2001 ◽  
Vol 126 (6) ◽  
pp. 654-660 ◽  
Author(s):  
Nathanael R. Hauck ◽  
Amy F. Iezzoni ◽  
Hisayo Yamane ◽  
Ryutaro Tao

Correct assignment of self-incompatibility alleles (S-alleles) in sweet cherry (Prunus avium L.) is important to assure fruit set in field plantings and breeding crosses. Until recently, only six S-alleles had been assigned. With the determination that the stylar product of the S-locus is a ribonuclease (RNase) and subsequent cloning of the S-RNases, it has been possible to use isoenzyme and DNA analysis to genotype S-alleles. As a result, numerous additional S-alleles have been identified; however, since different groups used different strategies for genotype analysis and different cultivars, the nomenclature contained inconsistencies and redundancies. In this study restriction fragment-length polymorphism (RFLP) profiles are presented using HindIII, EcoRI, DraI, or XbaI restriction digests of the S-alleles present in 22 sweet cherry cultivars which were chosen based upon their unique S-allele designations and/or their importance to the United States sweet cherry breeding community. Twelve previously published alleles (S1, S2, S3, S4, S5, S6, S7, S9, S10, S11, S12, and S13) could be differentiated by their RFLP profiles for each of the four restriction enzymes. Two new putative S-alleles, both found in `NY1625', are reported, bringing the total to 14 differentiable alleles. We propose the adoption of a standard nomenclature in which the sweet cherry cultivars `Hedelfingen' and `Burlat' are S3S5 and S3S9, respectively. Fragment sizes for each S-allele/restriction enzyme combination are presented for reference in future S-allele discovery projects.


HortScience ◽  
1991 ◽  
Vol 26 (2) ◽  
pp. 190-191 ◽  
Author(s):  
Ghassem Tehrani ◽  
William Lay

Pedigrees of Wit', `Venus', `Viscount', `Vogue', and `Viva' sweet cherry cultivars (Prunus avium L.) were confirmed with pollen-incompatibility studies. `Hedelfingen', the maternal parent of the last four cultivars, was assigned previously to Incompatibility Group VII (S4S5); however, it was shown that Vineland `Hedelfingen' belongs to Group `O' (Universal Donors) rather than VII. Thus, the parentage of the above cultivars, with the exception of `Vic', is correct as reported when these cultivars were named. `Vie' pedigree is incorrect and it belongs to Group `O' rather than the previously assigned XIII. `Valera' also belongs to Group `O' and the existence of Group XIV (S1S5), with `Valera' as its only representative cultivar, could not be confirmed.


2019 ◽  
Author(s):  
Maryam Bagheri ◽  
Ahmad Ershadi

AbstractIn the present study, the S-alleles of eighteen pear cultivars, (including fourteen cultivars planted commercially in Iran and four controls) are determined. 34 out of 36 S-alleles are detected using nine allele-specific primers, which are designed for amplification of S101/S102, S105, S106, S107, S108, S109, S111, S112 and S114, as well as consensus primers, PycomC1F and PycomC5R. S104, S101 and S105 were the most common S-alleles observed, respectively, in eight, seven and six cultivars. In 16 cultivars, (‘Bartlett’ (S101S102), ‘Beurre Giffard’ (S101S106), ‘Comice’ (S104S105), ‘Doshes’ (S104S107), ‘Koshia’ (S104S108), ‘Paskolmar’ (S101S105), ‘Felestini’ (S101S107), ‘Domkaj’ (S104S120), ‘Ghousi’ (S104S107), ‘Kaftar Bache’ (S104S120), ‘Konjoni’ (S104S108), ‘Laleh’ (S105S108), ‘Natanzi’ (S104S105), ‘Sebri’ (S101S104), ‘Se Fasleh’ (S101S105) and ‘Louise Bonne’ (S101S108)) both alleles are identified but in two cultivars, (‘Pighambari’ (S105) and ‘Shah Miveh Esfahan’ (S107)) only one allele is recognized. It is concluded that allele-specific PCR amplification can be considered as an efficient and rapid method to identify S-genotype of Iranian pear cultivars.


2014 ◽  
Vol 41 (No. 4) ◽  
pp. 153-159 ◽  
Author(s):  
K. Sharma ◽  
P. Sedlák ◽  
D. Zeka ◽  
P. Vejl ◽  
J. Soukup

&nbsp; Prunus avium species of the Rosaceae family exhibit gametophytic self-incompatibility. Determination of the self-incompatibility genotype of individuals is essential for genetic studies and the development of informed management strategies. The PCR-based detection of S-allele helps to promote and speed up traditional breeding activity and hence molecular analysis of the perspective genotypes has become more intensive in all cherry growing countries. The alleles S<sub>3</sub>, S<sub>4</sub> and S<sub>9</sub> from 34 accessions of Czech collections were determined using the polymerase chain reaction (PCR) method. Initially, DNA extracts were amplified with consensus primers that amplify across the first, second, or both introns of the S-ribonuclease gene which shows a considerable length polymorphism. The new allele specific primers were designed with the goal to overcome some occurring difficulties in the detection of expected alleles by previously published allele specific primers. S-alleles fragments of standard cultivars used in this study were PCR amplified, sequenced to validate the designed primers. The study demonstrates the advantage of newly designed primers application in testing of sweet cherry genotypes. &nbsp; &nbsp;


2017 ◽  
Vol 15 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Ya. I. Ivanovych ◽  
R. A. Volkov

Aim. In recent decades, Ukrainian breeders have created a large number of sweet cherry cultivars. Further progress in the breeding of sweet cherry requires a broad involvement of molecular methods. Especially important is the development of methods for the identification of genes / alleles that control economically valuable traits. The goal of the study was to develop a new method for discrimination of alleles of the PavCNR12 gene, which controls the fruit size in sweet cherry, and to reveal the allelic status of PavCNR12 in Ukrainian sweet cherry cultivars. Methods. The SNP-polymorphisms in the promoter regions of the PavCNR12-1, -2 and -3 alleles was detected applying comparison of published sequences. PCR amplification of the region was conducted, the obtained PCR products were cut by TaiI restriction endonuclease and separated by electrophoresis in a polyacrylamide gel. The identity of PCR products was confirmed by direct sequencing. Results. A new convenient method for the identification of allelic variants of the PavCNR12 gene using CAPS-markers is proposed. Using the method the allelic status of PavCNR12 in 56 sweet cherry cultivars of Ukrainian and foreign breeding was elucidated. Conclusions. A significant prevalence of the desirable allele PavCNR12-1 over the alleles PavCNR12-2 and -3 was found among the studied cultivars.Keywords: Ukrainian sweet cherry cultivars, genetic control of fruit size, alleles of PavCNR12 gene, CAPSmarkers, Prunus avium.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
José Quero-García ◽  
Philippe Letourmy ◽  
José Antonio Campoy ◽  
Camille Branchereau ◽  
Svetoslav Malchev ◽  
...  

AbstractRain-induced fruit cracking is a major problem in sweet cherry cultivation. Basic research has been conducted to disentangle the physiological and mechanistic bases of this complex phenomenon, whereas genetic studies have lagged behind. The objective of this work was to disentangle the genetic determinism of rain-induced fruit cracking. We hypothesized that a large genetic variation would be revealed, by visual field observations conducted on mapping populations derived from well-contrasted cultivars for cracking tolerance. Three populations were evaluated over 7–8 years by estimating the proportion of cracked fruits for each genotype at maturity, at three different areas of the sweet cherry fruit: pistillar end, stem end, and fruit side. An original approach was adopted to integrate, within simple linear models, covariates potentially related to cracking, such as rainfall accumulation before harvest, fruit weight, and firmness. We found the first stable quantitative trait loci (QTLs) for cherry fruit cracking, explaining percentages of phenotypic variance above 20%, for each of these three types of cracking tolerance, in different linkage groups, confirming the high complexity of this trait. For these and other QTLs, further analyses suggested the existence of at least two-linked QTLs in each linkage group, some of which showed confidence intervals close to 5 cM. These promising results open the possibility of developing marker-assisted selection strategies to select cracking-tolerant sweet cherry cultivars. Further studies are needed to confirm the stability of the reported QTLs over different genetic backgrounds and environments and to narrow down the QTL confidence intervals, allowing the exploration of underlying candidate genes.


Sign in / Sign up

Export Citation Format

Share Document