Identification of Self-incompatibility (S) Alleles of Some Local Sweet Cherry Genotypes from Turkey

2021 ◽  
Author(s):  
Sinem Ozturk Erdem ◽  
Neriman Beyhan ◽  
Leila Demirsoy
2018 ◽  
Vol 15 (2) ◽  
pp. 150-158
Author(s):  
Ya. I. Ivanovych ◽  
N. V. Tryapitsyna ◽  
K. M. Udovychenko ◽  
R. A. Volkov

Aim. Ukrainian breeders have created a large number of sweet cherry cultivars, which still remain almost unexplored at the molecular level. The aim of our study was to identify the self-incompatibility alleles (S-alleles) in Ukrainian sweet cherry cultivars and landraces, and to elucidate, to which cross-incompatibility group the cultivars belong. Methods. The PCR was conducted using consensus primers to the first and second introns of S-RNAse gene and to the single intron of SFB gene. The electrophoretic analysis of the PCR products of the second intron of S-RNAse was carried out in agarose gel, whereas detection of fluorescently labeled DNA fragments of the first S-RNAse intron and the SFB intron was performed using a genetic analyzer. Results. The S-alleles of 25 Ukrainian sweet cherry cultivars and 10 landraces were identified. The S-alleles frequencies and affiliation of cultivars and landraces to the groups of cross-incompatibility were determined. The obtained data can be used in breeding programs and by planning of industrial plantings. Conclusions. In the study, 12 different S-alleles and 79 S-haplotypes were identified. The S1, S3, S4, S5, S6 and S9 alleles are the most widespread among Ukrainian sweet cherry cultivars and landraces. The high frequencies of S5 and especially of S9 alleles are characteristic for the Ukrainian cultivars and distinguish them from other European ones. For the Ukrainian sweet cherry cultivars, the XXXVII (S5S9) cross-incompatibility group appeared to be the most numerous.Keywords: Ukrainian sweet cherry cultivars, S-locus, Sgenotypes, self- and cross-incompatibility, Prunus avium.


Euphytica ◽  
2007 ◽  
Vol 160 (2) ◽  
pp. 155-163 ◽  
Author(s):  
Gunars Lacis ◽  
Edite Kaufmane ◽  
Isaak Rashal ◽  
Viktor Trajkovski ◽  
Amy F. Iezzoni

2019 ◽  
Vol 37 (4) ◽  
pp. 1193-1201 ◽  
Author(s):  
Mathieu Genete ◽  
Vincent Castric ◽  
Xavier Vekemans

Abstract Plant self-incompatibility (SI) is a genetic system that prevents selfing and enforces outcrossing. Because of strong balancing selection, the genes encoding SI are predicted to maintain extraordinarily high levels of polymorphism, both in terms of the number of functionally distinct S-alleles that segregate in SI species and in terms of their nucleotide sequence divergence. However, because of these two combined features, documenting polymorphism of these genes also presents important methodological challenges that have so far largely prevented the comprehensive analysis of complete allelic series in natural populations, and also precluded the obtention of complete genic sequences for many S-alleles. Here, we develop a powerful methodological approach based on a computationally optimized comparison of short Illumina sequencing reads from genomic DNA to a database of known nucleotide sequences of the extracellular domain of SRK (eSRK). By examining mapping patterns along the reference sequences, we obtain highly reliable predictions of S-genotypes from individuals collected from natural populations of Arabidopsis halleri. Furthermore, using a de novo assembly approach of the filtered short reads, we obtain full-length sequences of eSRK even when the initial sequence in the database was only partial, and we discover putative new SRK alleles that were not initially present in the database. When including those new alleles in the reference database, we were able to resolve the complete diploid SI genotypes of all individuals. Beyond the specific case of Brassicaceae S-alleles, our approach can be readily applied to other polymorphic loci, given reference allelic sequences are available.


2014 ◽  
Vol 20 (1-2) ◽  
Author(s):  
J. Halász

Central Europe can be taken as a geographical and historical connection zone between the western growing countries and Asian gene centres of Prunus tree fruits. The determination of the S-genotype of stone fruit (mainly almond, plum, cherries and apricot) cultivars and landraces has both practical and theoretical significance. Our group has allocated complete S-genotypes for more than 200 cultivars and selections of almond, Japanese plum, sweet cherry and apricot. Among Eastern European almond cultivars, two novel cross-incompatibility groups (CIGs) were identified. S-alleles of a related species were also shown in P. dulcis accessions; a fact seems to be indicative of introgressive hybridization. Our results with Japanese plum clarified and harmonized two different allele nomenclatures and formed a basis for intensive international studies. In apricot, a total of 13 new S-alleles were identified from Eastern European and Asian accessions. Many Turkish and North African cultivars were classified into new CIGs, III–XVII. Results suggest that the mutation rendering apricot self-compatible might have occurred somewhere in south-east of Turkey and we were successful to confirm the presumed Irano-Caucasian origin of North African apricots based on the geographical distribution of S-alleles. In sweet cherry, new alleles have been identified and characterized from Turkish cultivars and selections. In addition, wild sweet cherry and sour cherry S-alleles were also shown indicating a a broader gene pool in Turkey as compared with international cultivars. We also used S-genotype information of Ukrainian sweet cherry cultivars to design crosses in a functional breeding program. Our results exhibit an increased number of S-alleles in tree fruit accessions native to the regions from Eastern Europe to Central Asia, which can be used to develop S-genotyping methods, to assist cultivation and draw inferences for crop evolution.


2020 ◽  
Author(s):  
Alexander Harkness ◽  
Yaniv Brandvain

1SummaryTraditionally, we expect that self-incompatibility alleles (S-alleles), which prevent self-fertilization, should benefit from negative-frequency dependent selection and rise to high frequency when introduced to a new population through gene flow. However, the most taxonomically widespread form of self-incompatibility, the ribonuclease-based system ancestral to the core eudicots, functions through nonself-recognition, which drastically alters the process of S-allele diversification.We analyze a model of S-allele evolution in two populations connected by migration, focusing on comparisons among the fates of S-alleles originally unique to each population and those shared among populations.We find that both shared and unique S-alleles originating from the population with more unique S-alleles were usually fitter than S-alleles from the population with fewer. Resident S-alleles were often driven extinct and replaced by migrant S-alleles, though this outcome could be averted by pollen limitation or biased migration.Nonself-recognition-based self-incompatibility will usually either disfavor introgression of S-alleles or result in the whole-sale replacement of S-alleles from one population with those from another.


2006 ◽  
Vol 12 (2) ◽  
Author(s):  
A. Hegedűs

Sour cherry (Prunus cerasus L.) is an allotetraploid species derived from hybridisation of the diploid sweet cherry (P avium L.) and the tetraploid ground cherry (P. fruticosa Pall.). Although numerous self-incompatible cultivars exist, the most sour cherry cultivars are self-compatible, which might be due to their tetraploid nature. This review is dedicated to show the limited information on the genetics of self-incompatibility in sour cherry accumulated during the last five years. Two different hypotheses (genomic arrangement of the alleles or the accumulation of non-functional S-haplotypes) are discussed. Heteroallelic sour cherry pollen was shown to be self-incompatible, which is counter to the Solanaceae where heteroallelic pollen frequently self-compatible due to a kind of competitive interaction between the two different alleles. This review highlights some inconsistencies in the hope that clarification will be achieved in the near future.


Sign in / Sign up

Export Citation Format

Share Document