scholarly journals A Model of Intuitionistic Affine Logic from Stable Domain Theory (Revised and Expanded Version)

1994 ◽  
Vol 1 (27) ◽  
Author(s):  
Torben Braüner

Girard worked with the category of coherence spaces and continuous stable maps and observed that the functor that forgets the linearity of linear stable maps has a left adjoint. This fundamental observation gave rise to the discovery of Linear Logic. Since then, the category of coherence spaces and linear stable maps, with the comonad induced by the adjunction, has been considered a canonical model of Linear Logic. Now, the same phenomenon is present if we consider the category of pre dI domains and continuous stable maps, and the category of dI domains and linear stable maps; the functor that forgets the linearity has a left adjoint. This gives an alternative model of Intuitionistic Linear Logic. It turns out that this adjunction can be factored in two adjunctions yielding a model of Intuitionistic Affine Logic; the category of pre dI domains and affine stable functions. It is the goal of this paper to show that this category is actually a model of Intuitionistic Affine Logic, and to show that this category moreover has properties which make it possible to use it to model convergence/divergence behaviour and recursion.

1994 ◽  
Vol 1 (22) ◽  
Author(s):  
Torben Braüner

A main concern of the paper will be a Curry-Howard interpretation of Intuitionistic Linear Logic. It will be extended with recursion, and the resulting functional programming language will be given operational as well as categorical semantics. The two semantics will be related by soundness and adequacy results. The main features of the categorical semantics are that convergence/divergence behaviour is modelled by a strong monad, and that recursion is modelled by ``linear fixpoints'' induced by CPO structure on the hom-sets. The ``linear fixpoints'' correspond to ordinary fixpoints in the category of free coalgebras w.r.t. the comonad used to interpret the ``of course'' modality. Concrete categories from (stable) domain theory satisfying the axioms of the categorical model are given, and thus adequacy follows in these instances from the general result.


2000 ◽  
Vol 10 (6) ◽  
pp. 719-745 ◽  
Author(s):  
MICHAEL HUTH ◽  
ACHIM JUNG ◽  
KLAUS KEIMEL

We study continuous lattices with maps that preserve all suprema rather than only directed ones. We introduce the (full) subcategory of FS-lattices, which turns out to be *-autonomous, and in fact maximal with this property. FS-lattices are studied in the presence of distributivity and algebraicity. The theory is extremely rich with numerous connections to classical Domain Theory, complete distributivity, Topology and models of Linear Logic.


2005 ◽  
Vol 13 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Maria Emilia Maietti ◽  
Paola Maneggia ◽  
Valeria de Paiva ◽  
Eike Ritter

2005 ◽  
Vol 70 (1) ◽  
pp. 84-98 ◽  
Author(s):  
C. J. van Alten

AbstractThe logics considered here are the propositional Linear Logic and propositional Intuitionistic Linear Logic extended by a knotted structural rule: . It is proved that the class of algebraic models for such a logic has the finite embeddability property, meaning that every finite partial subalgebra of an algebra in the class can be embedded into a finite full algebra in the class. It follows that each such logic has the finite model property with respect to its algebraic semantics and hence that the logic is decidable.


Sign in / Sign up

Export Citation Format

Share Document