The block Schur product is a Hadamard product
Given two $n \times n $ matrices $A = (a_{ij})$ and $B=(b_{ij}) $ with entries in $B(H)$ for some Hilbert space $H$, their block Schur product is the $n \times n$ matrix $ A\square B := (a_{ij}b_{ij})$. Given two continuous functions $f$ and $g$ on the torus with Fourier coefficients $(f_n)$ and $(g_n)$ their convolution product $f \star g$ has Fourier coefficients $(f_n g_n)$. Based on this, the Schur product on scalar matrices is also known as the Hadamard product. We show that for a C*-algebra $\mathcal{A} $, and a discrete group $G$ with an action $\alpha _g$ of $G$ on $\mathcal{A} $ by *-automorphisms, the reduced crossed product C*-algebra $\mathrm {C}^*_r(\mathcal{A} , \alpha , G)$ possesses a natural generalization of the convolution product, which we suggest should be named the Hadamard product. We show that this product has a natural Stinespring representation and we lift some known results on block Schur products to this setting, but we also show that the block Schur product is a special case of the Hadamard product in a crossed product algebra.