product algebra
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
pp. 1-42
Author(s):  
JOHANNES CHRISTENSEN ◽  
KLAUS THOMSEN

Abstract Let $\phi :X\to X$ be a homeomorphism of a compact metric space X. For any continuous function $F:X\to \mathbb {R}$ there is a one-parameter group $\alpha ^{F}$ of automorphisms (or a flow) on the crossed product $C^*$ -algebra $C(X)\rtimes _{\phi }\mathbb {Z}$ defined such that $\alpha ^{F}_{t}(fU)=fUe^{-itF}$ when $f \in C(X)$ and U is the canonical unitary in the construction of the crossed product. In this paper we study the Kubo--Martin--Schwinger (KMS) states for these flows by developing an intimate relation to the ergodic theory of non-singular transformations and show that the structure of KMS states can be very rich and complicated. Our results are complete concerning the set of possible inverse temperatures; in particular, we show that when $C(X) \rtimes _{\phi } \mathbb Z$ is simple this set is either $\{0\}$ or the whole line $\mathbb R$ .


2021 ◽  
Vol 10 (2) ◽  
pp. 36
Author(s):  
Ngigi Peter Kung’u ◽  
J. K. Arap Koske ◽  
Josphat K. Kinyanjui

This study presents an investigation of an optimal slope design in the second degree Kronecker model for mixture experiments in four dimensions and its application in blending of selected fruits to prepare punch. The study centers around weighted centroid designs, with the second degree Kronecker model. This is guided by the fact that the class of weighted centroid designs is a complete class in the Kiefer Ordering. To overcome the problem of estimability, a concise coefficient matrix is defined that aid in selecting a maximal parameter subsystem for the Kronecker model. The information matrix of the design is obtained using a linear function of the moment matrices for the centroids and directly linked to the slope matrix. The discussion is based on Kronecker product algebra which clearly reflects the symmetries of the simplex experimental region. From the family of matrix means, a well-defined function is used to determine optimal values of the efficient developed design. Finally, a demonstration is provided for the case where the design is applied in fruit blending.


2020 ◽  
Vol 126 (3) ◽  
pp. 603-616
Author(s):  
Erik Christensen

Given two $n \times n $ matrices $A = (a_{ij})$ and $B=(b_{ij}) $ with entries in $B(H)$ for some Hilbert space $H$, their block Schur product is the $n \times n$ matrix $ A\square B := (a_{ij}b_{ij})$. Given two continuous functions $f$ and $g$ on the torus with Fourier coefficients $(f_n)$ and $(g_n)$ their convolution product $f \star g$ has Fourier coefficients $(f_n g_n)$. Based on this, the Schur product on scalar matrices is also known as the Hadamard product. We show that for a C*-algebra $\mathcal{A} $, and a discrete group $G$ with an action $\alpha _g$ of $G$ on $\mathcal{A} $ by *-automorphisms, the reduced crossed product C*-algebra $\mathrm {C}^*_r(\mathcal{A} , \alpha , G)$ possesses a natural generalization of the convolution product, which we suggest should be named the Hadamard product. We show that this product has a natural Stinespring representation and we lift some known results on block Schur products to this setting, but we also show that the block Schur product is a special case of the Hadamard product in a crossed product algebra.


2020 ◽  
pp. 1-41
Author(s):  
JENS KAAD ◽  
DAVID KYED

We provide a detailed study of actions of the integers on compact quantum metric spaces, which includes general criteria ensuring that the associated crossed product algebra is again a compact quantum metric space in a natural way. Moreover, we provide a flexible set of assumptions ensuring that a continuous family of $\ast$ -automorphisms of a compact quantum metric space yields a field of crossed product algebras which varies continuously in Rieffel’s quantum Gromov–Hausdorff distance. Finally, we show how our results apply to continuous families of Lip-isometric actions on compact quantum metric spaces and to families of diffeomorphisms of compact Riemannian manifolds which vary continuously in the Whitney $C^{1}$ -topology.


2020 ◽  
Vol 9 (2) ◽  
pp. 30
Author(s):  
Ngigi Peter Kung’u ◽  
J. K. Arap Koske ◽  
Josphat K. Kinyanjui

This study presents an investigation of an optimal slope design in the second degree Kronecker model for mixture experiments in three dimensions. The study is restricted to weighted centroid designs, with the second degree Kronecker model. A well-defined coefficient matrix is used to select a maximal parameter subsystem for the model since its full parameter space is inestimable. The information matrix of the design is obtained using a linear function of the moment matrices for the centroids and directly linked to the slope matrix. The discussion is based on Kronecker product algebra which clearly reflects the symmetries of the simplex experimental region. Eventually the matrix means are used in determining optimal values of the efficient developed design.


2019 ◽  
Vol 29 (07) ◽  
pp. 1193-1218
Author(s):  
Donggyun Kim ◽  
Sangjib Kim ◽  
Euisung Park

The tensor product algebra [Formula: see text] for the complex general linear group [Formula: see text], introduced by Howe et al., describes the decomposition of tensor products of irreducible polynomial representations of [Formula: see text]. Using the hive model for the Littlewood–Richardson (LR) coefficients, we provide a finite presentation of the algebra [Formula: see text] for [Formula: see text] in terms of generators and relations, thereby giving a description of highest weight vectors of irreducible representations in the tensor products. We also compute the generating function of certain sums of LR coefficients.


2019 ◽  
Vol 11 (03) ◽  
pp. 739-751 ◽  
Author(s):  
Hongzhi Liu

Different diffeomorphisms can give the same [Formula: see text] crossed product algebra. Our main purpose is to show that we can still classify dynamical systems with some appropriate smooth crossed product algebras when their corresponding [Formula: see text] crossed product algebras are isomorphic. For this purpose, we construct two minimal unique ergodic diffeomorphisms [Formula: see text] and [Formula: see text] of [Formula: see text]. The [Formula: see text] algebras classification theory, smooth crossed product algebras considered by R. Nest and cyclic cohomology are used to show that [Formula: see text] and [Formula: see text] give the same [Formula: see text] algebra and induce different smooth crossed product algebras.


2019 ◽  
Vol 62 (S1) ◽  
pp. S165-S185 ◽  
Author(s):  
CHRISTIAN BROWN ◽  
SUSANNE PUMPLÜN

AbstractFor any central simple algebra over a field F which contains a maximal subfield M with non-trivial automorphism group G = AutF(M), G is solvable if and only if the algebra contains a finite chain of subalgebras which are generalized cyclic algebras over their centers (field extensions of F) satisfying certain conditions. These subalgebras are related to a normal subseries of G. A crossed product algebra F is hence solvable if and only if it can be constructed out of such a finite chain of subalgebras. This result was stated for division crossed product algebras by Petit and overlaps with a similar result by Albert which, however, was not explicitly stated in these terms. In particular, every solvable crossed product division algebra is a generalized cyclic algebra over F.


2019 ◽  
Vol 71 (03) ◽  
pp. 717-747
Author(s):  
Ross Stokke

AbstractMotivated by the definition of a semigroup compactication of a locally compact group and a large collection of examples, we introduce the notion of an (operator) homogeneous left dual Banach algebra (HLDBA) over a (completely contractive) Banach algebra $A$ . We prove a Gelfand-type representation theorem showing that every HLDBA over A has a concrete realization as an (operator) homogeneous left Arens product algebra: the dual of a subspace of $A^{\ast }$ with a compatible (matrix) norm and a type of left Arens product $\Box$ . Examples include all left Arens product algebras over $A$ , but also, when $A$ is the group algebra of a locally compact group, the dual of its Fourier algebra. Beginning with any (completely) contractive (operator) $A$ -module action $Q$ on a space $X$ , we introduce the (operator) Fourier space $({\mathcal{F}}_{Q}(A^{\ast }),\Vert \cdot \Vert _{Q})$ and prove that $({\mathcal{F}}_{Q}(A^{\ast })^{\ast },\Box )$ is the unique (operator) HLDBA over $A$ for which there is a weak $^{\ast }$ -continuous completely isometric representation as completely bounded operators on $X^{\ast }$ extending the dual module representation. Applying our theory to several examples of (completely contractive) Banach algebras $A$ and module operations, we provide new characterizations of familiar HLDBAs over A and we recover, and often extend, some (completely) isometric representation theorems concerning these HLDBAs.


Sign in / Sign up

Export Citation Format

Share Document