Diophantine equations and class number of imaginary quadratic fields

2000 ◽  
Vol 20 (2) ◽  
pp. 199
Author(s):  
Zhenfu Cao ◽  
Xiaolei Dong
2009 ◽  
Vol 51 (1) ◽  
pp. 187-191 ◽  
Author(s):  
YASUHIRO KISHI

AbstractWe prove that the class number of the imaginary quadratic field $\Q(\sqrt{2^{2k}-3^n})$ is divisible by n for any positive integers k and n with 22k < 3n, by using Y. Bugeaud and T. N. Shorey's result on Diophantine equations.


1991 ◽  
Vol 124 ◽  
pp. 181-197 ◽  
Author(s):  
Hideo Yokoi

Although class number one problem for imaginary quadratic fields was solved in 1966 by A. Baker [3] and by H. M. Stark [25] independently, the problem for real quadratic fields remains still unsettled. However, since papers by Ankeny–Chowla–Hasse [2] and H. Hasse [9], many papers concerning this problem or giving estimate for class numbers of real quadratic fields from below have appeared. There are three methods used there, namely the first is related with quadratic diophantine equations ([2], [9], [27, 28, 29, 31], [17]), and the second is related with continued fraction expantions ([8], [4], [16], [14], [18]).


Sign in / Sign up

Export Citation Format

Share Document