scholarly journals NOTE ON THE DIVISIBILITY OF THE CLASS NUMBER OF CERTAIN IMAGINARY QUADRATIC FIELDS

2009 ◽  
Vol 51 (1) ◽  
pp. 187-191 ◽  
Author(s):  
YASUHIRO KISHI

AbstractWe prove that the class number of the imaginary quadratic field $\Q(\sqrt{2^{2k}-3^n})$ is divisible by n for any positive integers k and n with 22k < 3n, by using Y. Bugeaud and T. N. Shorey's result on Diophantine equations.

2017 ◽  
Vol 153 (11) ◽  
pp. 2287-2309 ◽  
Author(s):  
D. R. Heath-Brown ◽  
L. B. Pierce

For any odd prime $\ell$, let $h_{\ell }(-d)$ denote the $\ell$-part of the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$. Nontrivial pointwise upper bounds are known only for $\ell =3$; nontrivial upper bounds for averages of $h_{\ell }(-d)$ have previously been known only for $\ell =3,5$. In this paper we prove nontrivial upper bounds for the average of $h_{\ell }(-d)$ for all primes $\ell \geqslant 7$, as well as nontrivial upper bounds for certain higher moments for all primes $\ell \geqslant 3$.


1991 ◽  
Vol 124 ◽  
pp. 181-197 ◽  
Author(s):  
Hideo Yokoi

Although class number one problem for imaginary quadratic fields was solved in 1966 by A. Baker [3] and by H. M. Stark [25] independently, the problem for real quadratic fields remains still unsettled. However, since papers by Ankeny–Chowla–Hasse [2] and H. Hasse [9], many papers concerning this problem or giving estimate for class numbers of real quadratic fields from below have appeared. There are three methods used there, namely the first is related with quadratic diophantine equations ([2], [9], [27, 28, 29, 31], [17]), and the second is related with continued fraction expantions ([8], [4], [16], [14], [18]).


2011 ◽  
Vol 54 (1) ◽  
pp. 149-154 ◽  
Author(s):  
ZHU MINHUI ◽  
WANG TINGTING

AbstractLet hK denote the class number of the imaginary quadratic field $K=\mathbf{Q}(\sqrt{2^{2m}-k^n})$, where m and n are positive integers, k is an odd integer with k > 1 and 22m < kn. In this paper we prove that if either 3 ∣ n and 22m − kn ≡ 5(mod 8) or n = 3 and k = (22m+2 −1)/3, then ∣ hK. Otherwise, we have n ∣ hK.


2011 ◽  
Vol 63 (6) ◽  
pp. 1220-1537 ◽  
Author(s):  
Michael Baake ◽  
Rudolf Scharlau ◽  
Peter Zeiner

AbstractThe similar sublattices of a planar lattice can be classified via its multiplier ring. The latter is the ring of rational integers in the generic case, and an order in an imaginary quadratic field otherwise. Several classes of examples are discussed, with special emphasis on concrete results. In particular, we derive Dirichlet series generating functions for the number of distinct similar sublattices of a given index, and relate them to zeta functions of orders in imaginary quadratic fields.


2005 ◽  
Vol 57 (6) ◽  
pp. 1155-1177 ◽  
Author(s):  
Alina Carmen Cojocaru ◽  
Etienne Fouvry ◽  
M. Ram Murty

AbstractLet E be an elliptic curve defined over ℚ and without complex multiplication. Let K be a fixed imaginary quadratic field. We find nontrivial upper bounds for the number of ordinary primes p ≤ x for which ℚ(πp) = K, where πp denotes the Frobenius endomorphism of E at p. More precisely, under a generalized Riemann hypothesis we show that this number is OE(x17/18 log x), and unconditionally we show that this number is We also prove that the number of imaginary quadratic fields K, with −disc K ≤ x and of the form K = ℚ(πp), is ≫E log log log x for x ≥ x0(E). These results represent progress towards a 1976 Lang–Trotter conjecture.


2015 ◽  
Vol 151 (9) ◽  
pp. 1585-1625 ◽  
Author(s):  
Antonio Lei ◽  
David Loeffler ◽  
Sarah Livia Zerbes

We construct an Euler system attached to a weight 2 modular form twisted by a Grössencharacter of an imaginary quadratic field $K$, and apply this to bounding Selmer groups.


2013 ◽  
Vol 56 (1) ◽  
pp. 148-160
Author(s):  
Hassan Oukhaba ◽  
Stéphane Viguié

AbstractIn this paper we extend K. Rubin's methods to prove the Gras conjecture for abelian extensions of a given imaginary quadratic field k and prime numbers p that divide the number of roots of unity in k.


2020 ◽  
pp. 1-41
Author(s):  
Dongxi Ye

Abstract In [5], Chen and Yui conjectured that Gross–Zagier type formulas may also exist for Thompson series. In this work, we verify Chen and Yui’s conjecture for the cases for Thompson series $j_{p}(\tau )$ for $\Gamma _{0}(p)$ for p prime, and equivalently establish formulas for the prime decomposition of the resultants of two ring class polynomials associated to $j_{p}(\tau )$ and imaginary quadratic fields and the prime decomposition of the discriminant of a ring class polynomial associated to $j_{p}(\tau )$ and an imaginary quadratic field. Our method for tackling Chen and Yui’s conjecture on resultants can be used to give a different proof to a recent result of Yang and Yin. In addition, as an implication, we verify a conjecture recently raised by Yang, Yin, and Yu.


Sign in / Sign up

Export Citation Format

Share Document