scholarly journals Theoretical investigation of spatial optical solitons in nematic liquid crystals with negative dielectric anisotropy

2014 ◽  
Vol 63 (18) ◽  
pp. 184207
Author(s):  
Li Yi-Heng ◽  
Wang Jing ◽  
Hu Wei ◽  
Guo Qi
2003 ◽  
Vol 103 (2-3) ◽  
pp. 161-167 ◽  
Author(s):  
G. Assanto ◽  
M. Peccianti ◽  
C. Conti

2018 ◽  
Vol 10 (2) ◽  
pp. 33 ◽  
Author(s):  
Pawel Stanislaw Jung ◽  
Miroslaw Karpierz ◽  
Marek Trippenbach ◽  
Demetrios Christodoulides ◽  
Wieslaw Krolikowski

We study spatial soliton formation in a system with competing nonlinearities. In doing so, we consider a specific nonlinear response that involves both focusing and defocusing nonlocal contributions. We demonstrate that at a sufficiently high input power level, the interplay between these nonlocal nonlinearities may lead to the formation of in-phase, two-hump, fundamental spatial solitons. The conditions required for the existence of these two-peak spatial solitons are also presented. Full Text: PDF ReferencesG. Stegeman and M. Segev, "Optical Spatial Solitons and Their Interactions: Universality and Diversity", Science 286, 1518 (1999). CrossRef Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, 2003).P. Varatharajah et al., "Stationary nonlinear surface waves and their stability in diffusive Kerr media", Opt. Lett. 13, 690 (1988). CrossRef G. Assanto and M. Peccianti, "Spatial solitons in nematic liquid crystals," IEEE J. Quantum Electron. 39, 13 (2003). CrossRef G. Assanto, ed. Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals (Wiley, 2012). CrossRef O. Bang, W. Krolikowski, J. Wyller, J.J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media", Phys. Rev. E 66, 046619 (2002). CrossRef X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, K. Neyts, "Single-component higher-order mode solitons in liquid crystals," Opt. Commun. 333, 211 (2004). CrossRef C. Conti, M. Peccianti, and G. Assanto, "Route to nonlocality and observation of accessible solitons," Phys. Rev. Lett. 91, 073901 (2003). CrossRef U. A. Laudyn, P. S. Jung, M.A. Karpierz, and G. Assanto, "Quasi two-dimensional astigmatic solitons in soft chiral metastructures," Sci. Rep. 6, 22923 (2016). CrossRef U. A. Laudyn, P. S. Jung, M. A. Karpierz, G. Assanto, "Power-induced evolution and increased dimensionality of nonlinear modes in reorientational soft matter," Opt. Lett. 39(22), 6399–6402 (2014). CrossRef Y. V. Izdebskaya, V. G. Shvedov, P. S. Jung, and W. Krolikowski, "Stable vortex soliton in nonlocal media with orientational nonlinearity," Opt. Lett. 43, 66-69 (2018) CrossRef P.S. Jung, W. Krolikowski, U.A. Laudyn, M. Trippenbach and M.A. Karpierz, "Supermode spatial optical solitons in liquid crystals with competing nonlinearities", Phys. Rev. A 95, 023820 (2017) CrossRef P.S. Jung, W. Krolikowski, U.A. Laudyn, M.A. Karpierz and M. Trippenbach, "Semi-analytical approach to supermode spatial solitons formation in nematic liquid crystals", Opt. Express 25, 23893 (2017) CrossRef S. Jungling and J. C. Chen, "A study and optimization of eigenmode calculations using the imaginary-distance beam-propagation method", IEEE J. Quantum Electron. 30, 2098 (1994). CrossRef P.S. Jung, K. Rutkowska and M.A. Karpierz, "Evanescent field boundary conditions for modelling of light propagation", Journal of Computational Science 25, 115 (2018) CrossRef A.A. Hardy, W. Streifer, "Coupled mode theory of parallel waveguides," IEEE J. Lightwave Techn. LT-3, 1135 (1985) CrossRef M. Matuszewski, B.A. Malomed, and M. Trippenbach, "Spontaneous symmetry breaking of solitons trapped in a double channel potential," Phys. Rev. A 75, 063621 (2007) CrossRef


Nematicons ◽  
2012 ◽  
pp. 159-176
Author(s):  
Yana V. Izdebskaya ◽  
Anton S. Desyatnikov ◽  
Yuri S. Kivshar

2020 ◽  
Vol 408 ◽  
pp. 132448
Author(s):  
Juan Pablo Borgna ◽  
Panayotis Panayotaros ◽  
Diego Rial ◽  
Constanza Sánchez de la Vega

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1051 ◽  
Author(s):  
Chuen-Lin Tien ◽  
Rong-Ji Lin ◽  
Chi-Chung Kang ◽  
Bing-Yau Huang ◽  
Chie-Tong Kuo ◽  
...  

This research applies the non-linear effect of azo dye-doped liquid crystal materials to develop a small, simple, and adjustable beam-splitting component with grating-like electrodes. Due to the dielectric anisotropy and optical birefringence of nematic liquid crystals, the director of the liquid crystal molecules can be reoriented by applying external electric fields, causing a periodic distribution of refractive indices and resulting in a diffraction phenomenon when a linearly polarized light is introduced. The study also discusses the difference in the refractive index (Δn), the concentration of azo dye, and the rising constant depending on the diffraction signals. The experimental results show that first-order diffraction efficiency can reach ~18% with 0.5 wt % azo dye (DR-1) doped in the nematic liquid crystals.


2012 ◽  
Vol 21 (03) ◽  
pp. 1250033 ◽  
Author(s):  
GAETANO ASSANTO ◽  
NOEL F. SMYTH ◽  
WENJUN XIA

We use modulation theory to analyze the interaction of optical solitons and vortices with a dielectric interface between two regions of nematic liquid crystals. In the analysis we consider the role of nonlocality, anisotropy and nonlinear reorientation and compare modulation theory results with numerical results. Upon interacting with the interface, nematicons undergo transverse distortion but remain stable and eventually return to a steady state, whereas vortices experience an enhanced instability and can break up into bright beams or solitary waves.


1993 ◽  
Vol 14 (5) ◽  
pp. 1319-1325 ◽  
Author(s):  
P. R. Kishore ◽  
T. F. S. Raj ◽  
A. W. Iqbal ◽  
S. S. Sastry ◽  
G. Satyanandam

Sign in / Sign up

Export Citation Format

Share Document