TOWARDS REAL-TIME STRUCTURAL HEALTH MONITORING DAMAGE DETECTION WITHOUT USER INPUT

Author(s):  
Mohmmad Salmanpour ◽  
Zahra Sharif Khodaei ◽  
Ferri Aliabadi
2020 ◽  
pp. 147592172096694
Author(s):  
Lorena Andrade Nunes ◽  
Rafaelle Piazzaroli Finotti Amaral ◽  
Flávio de Souza Barbosa ◽  
Alexandre Abrahão Cury

Over the past decades, several methods for structural health monitoring have been developed and employed in various practical applications. Some of these techniques aimed to use raw dynamic measurements to detect damage or structural changes. Desirably, structural health monitoring systems should rely on computational tools capable of evaluating the information acquired from the structure continuously, in real time. However, most damage detection techniques fail to identify novelties automatically (e.g. damage, abnormal behaviors, and among others), rendering human decisions necessary. Recent studies have shown that the use of statistical parameters extracted directly from raw time domain data, such as acceleration measurements, could provide more sensitive responses to damage with less computational effort. In addition, machine learning techniques have never been more in trend than nowadays. In this context, this article proposes an original approach based on the combination of statistical indicators—to characterize acceleration measurements in the time domain—and computational intelligence techniques to detect damage. The methodology consists in the combined use of supervised (artificial neural networks) and unsupervised ( k-means clustering) learning classification methods for the construction of a hybrid classifier. The objective is to detect not only structural states already known but also dynamic behaviors that have not been identified yet, that is, novelties. The main purpose is to allow a real-time structural integrity monitoring, providing responses in an automatic and continuous way while the structure is under operation. The robustness of the proposed approach is evaluated using data obtained from numerical simulations and experimental tests performed in laboratory and in situ. Results achieved so far attest a promising performance of the hybrid classifier.


2019 ◽  
Vol 55 (7) ◽  
pp. 1-6
Author(s):  
Zhaoyuan Leong ◽  
William Holmes ◽  
James Clarke ◽  
Akshay Padki ◽  
Simon Hayes ◽  
...  

Author(s):  
Wiesław J Staszewski ◽  
Amy N Robertson

Signal processing is one of the most important elements of structural health monitoring. This paper documents applications of time-variant analysis for damage detection. Two main approaches, the time–frequency and the time–scale analyses are discussed. The discussion is illustrated by application examples relevant to damage detection.


2017 ◽  
Vol 17 (4) ◽  
pp. 815-822 ◽  
Author(s):  
Jochen Moll ◽  
Philip Arnold ◽  
Moritz Mälzer ◽  
Viktor Krozer ◽  
Dimitry Pozdniakov ◽  
...  

Structural health monitoring of wind turbine blades is challenging due to its large dimensions, as well as the complex and heterogeneous material system. In this article, we will introduce a radically new structural health monitoring approach that uses permanently installed radar sensors in the microwave and millimetre-wave frequency range for remote and in-service inspection of wind turbine blades. The radar sensor is placed at the tower of the wind turbine and irradiates the electromagnetic waves in the direction of the rotating blades. Experimental results for damage detection of complex structures will be presented in a laboratory environment for the case of a 10-mm-thick glass-fibre-reinforced plastic plate, as well as a real blade-tip sample.


Sign in / Sign up

Export Citation Format

Share Document