scholarly journals LncRNA AC007255.1, an immune-related prognostic enhancer RNA in esophageal cancer

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11698
Author(s):  
Qingqing Wang ◽  
Xiaoyan Yu ◽  
Ningning Yang ◽  
Lu Xu ◽  
Yunfeng Zhou

Background Growing evidence has suggested that enhancer RNAs (eRNAs), a set of long non-coding RNAs (lncRNAs) that were derived from active enhancer regions, play critical roles in regulating gene expression in human cancers. Nevertheless potential functions of eRNAs in esophageal cancer ESCA have not yet been expounded. Here, this study aimed to explore key prognostic eRNAs in ESCA. Methods LncRNAs that were transcribed from active enhancer regions were analyzed utilizing the PreSTIGE algorithm, followed by prediction of their target genes. Based on the ESCA RNA-seq data from the TANRIC database, overall survival (OS)-related eRNAs were determined. The correlation between AC007255.1 expression and various clinical traits of ESCA was calculated. Functional enrichment analysis was presented based on its co-expressed genes. Based on the TIMER database, we analyzed correlations between AC007255.1 expression and immune infiltration levels. qRT-PCR was utilized to validate the expression of AC007255.1 and PRR15 in ESCA and normal tissues. Results Totally, 2,695 lncRNAs were transcribed from active enhancer regions. Among them, 33 were significantly related to OS. AC007255.1 was a key eRNA. PRR15 was a target gene of AC007255.1 (correlation coefficient r = 0.936). Patients with high AC007255.1 expression indicated poor OS time. There were significant correlations between AC007255.1 expression and clinical characteristics like pathological TNM, grade and stage. AC007255.1 was closely related to tight junction and neutrophil activation involved in immune response. Moreover, AC007255.1 expression was related to the infiltration levels of B cell, dendritic cell and neutrophil. qRT-PCR results confirmed that AC007255.1 and PRR15 were both up-regulated in ESCA tissues, and there was a positive correlation between the two. Conclusion Our findings identified a novel immune-related eRNA AC007255.1 in ESCA, which could be a promising prognostic factor for ESCA.

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
KunZhe Wu ◽  
ChunDong Zhang ◽  
Cheng Zhang ◽  
DongQiu Dai

Objective. We identified differentially expressed microRNAs (DEMs) between esophageal carcinoma (ESCA) tissues and normal esophageal tissues. We then constructed a novel three-miRNA signature to predict the prognosis of ESCA patients using bioinformatics analysis. Materials and Methods. We combined two microarray profiling datasets from the Gene Expression Omnibus (GEO) database and RNA-seq datasets from the Cancer Genome Atlas (TCGA) database to analyze DEMs in ESCA. The clinical data from 168 ESCA patients were selected from the TCGA database to assess the prognostic role of the DEMs. The TargetScan, miRDB, miRWalk, and DIANA websites were used to predict the miRNA target genes. Functional enrichment analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery (David), and protein-protein interaction (PPI) networks were obtained using the Search Tool for the Retrieval of Interacting Genes database (STRING). Results. With cut-off criteria of P<0.05 and |log2FC| > 1.0, 33 overlapping DEMs, including 27 upregulated and 6 downregulated miRNAs, were identified from GEO microarray datasets and TCGA RNA-seq count datasets. The Kaplan–Meier survival analysis indicated that a three-miRNA signature (miR-1301-3p, miR-431-5p, and miR-769-5p) was significantly associated with the overall survival of ESCA patients. The results of univariate and multivariate Cox regression analysis showed that the three-miRNA signature was a potential prognostic factor in ESCA. Furthermore, the gene functional enrichment analysis revealed that the target genes of the three miRNAs participate in various cancer-related pathways, including viral carcinogenesis, forkhead box O (FoxO), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (ErbB2), and mammalian target of rapamycin (mTOR) signaling pathways. In the PPI network, three target genes (MAPK1, RB1, and CLTC) with a high degree of connectivity were selected as hub genes. Conclusions. Our results revealed that a three-miRNA signature (miR-1301-3p, miR-431-5p, and miR-769-5p) is a potential novel prognostic biomarker for ESCA.


2020 ◽  
Author(s):  
Chaoxin Zhang ◽  
Tao Wang ◽  
Shengwei Liu ◽  
Bing Zhang ◽  
Xue Li ◽  
...  

Abstract Background: The vertebrate C/EBP transcription factors regulate many important biological processes, such as cell proliferation, differentiation, signal transduction, inflammation, and energy metabolism. The first C/EBP protein was identified in rat liver nuclei. Development of sequencing technology resulted in identification of the C/EBP genes in various species. In this study, a bioinformatics approach was used to determine the distribution of the members of the C/EBP family in vertebrates. A phylogenetic tree was constructed to analyze the C/EBP genes in vertebrates. Based on RNA-seq data, the expression patterns of pig C/EBP members in various tissues were analyzed. In addition, a gene transcription regulatory network was constructed with pig C/EBP members as the core.Results: We identified a total of 92 C/EBP genes in 17 vertebrate genomes. Phylogenetic analysis showed that all C/EBP TFs were classified into two groups; group I contained C/EBPβ TFs, and group II contained the remaining C/EBP TFs. The C/EBPα, C/EBPβ, C/EBPδ, C/EBPγ, and C/EBPζ genes were expressed ubiquitously with inconsistent expression patterns in various tissues. Moreover, a pig C/EBP regulatory network was constructed, including C/EBP genes, TFs, and miRNAs. A total of 39 FFL motifs were detected in the pig C/EBP regulatory network. Based on the RNA-seq data, gene expression patterns related to this FFL sub-network were analyzed in 27 adult Duroc tissues. Certain FFL motifs may be tissue specific. Functional enrichment analysis indicated that C/EBP and its target genes are involved in many important biological pathways. Conclusions: These results provide valuable information that clarifies the evolutionary relationships of the C/EBP family and contributes to the understanding of the biological function of C/EBP genes.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7882 ◽  
Author(s):  
Chao Wei ◽  
Jian-Jun Gao

Aim The study aims to identify differentially expressed microRNAs (DEMs) in gastric cancer (GC) and explore the expression, prognosis and downstream regulation role of miR-383-5p in GC. Methods The GC miRNA-Seq and clinical information were downloaded from Firebrowse which stores integrated data sourced from The Cancer Genome Atlas database. The DEMs were identified with limma package in R software at the cut-off criteria of P < 0.05 and |log2 fold change| > 1.0 (|log2FC| > 1.0). The expression of miR-383-5p in GC cell lines and 54 paired GC tissues was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The overall survival curve of miR-383-5p and the association between its expression and clinicopathological features were explored. Wound healing and cell counting kit-8 assays were performed to investigate the capacity of miR-383-5p in cell proliferation and migration. The downstream target genes were predicted by bioinformatics tools (miRDB, TargetScan and starBase). The consensus target genes were selected for gene functional enrichment analysis by FunRich v3.0 software. The luciferase reporter assay was performed to verify the potential targeting sites of miR-383-5p on lactate dehydrogenase A (LDHA). Results A total of 21 down-regulated miRNAs (including miR-383-5p) and 202 up-regulated miRNAs were identified by analyzing GC miRNA-Seq data. Survival analysis found that patients with low miR-383-5p expression had a shorter survival time (median survival time 21.1 months) than those with high expression (46.9 months). The results of qRT-PCR indicated that miR-383-5p was downregulated in GC cell lines and tissues, which was consistent with miRNA-Seq data. The expression of miR-383-5p was significantly associated with tumor size and differentiation grade. Besides, overexpression of miR-383-5p suppressed GC cells proliferation and migration. A total of 49 common target genes of miR-383-5p were obtained by bioinformatics tools and gene functional enrichment analysis showed that these predicted genes participated in PI3K, mTOR, c-MYC, TGF-beta receptor, VEGF/VEGFR and E-cadherin signaling pathways. The data showed that expression of miR-383-5p was negatively correlated with target LDHA (r = −0.203). Luciferase reporter assay suggested that LDHA was a target of miR-383-5p. Conclusion The present study concluded that miR-383-5p was downregulated and may act as a tumor suppressor in GC. Furthermore, its target genes were involved in important signaling pathways. It could be a prognostic biomarker and play a vital role in exploring the molecular mechanism of GC.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3326
Author(s):  
Xiaobo Li ◽  
Zhanfa Liu ◽  
Shaohui Ye ◽  
Yue Liu ◽  
Qian Chen ◽  
...  

Chinese Zhongwei goat is a rare and precious fur breed as its lamb fur is a well-known fur product. Wool bending of lamb fur of the Zhongwei goat is its most striking feature. However, the curvature of the wool decreases gradually with growth, which significantly affects its quality and economic value. The mechanism regulating the phenotypic changes of hair bending is still unclear. In the present study, the skin tissues of Zhongwei goats at 45 days (curving wool) and 108 days (slight-curving wool) after birth were taken as the research objects, and the expression profiling of long non-coding RNAs (lncRNAs) and mRNAs were analyzed based on the Ribo Zero RNA sequencing (RNA-seq) method. In total, 46,013 mRNAs and 13,549 lncRNAs were identified, of which 352 were differentially expressed mRNAs and 60 were. lncRNAs. Functional enrichment analysis of the target genes of lncRNAs were mainly enriched in PI3K-Akt, Arachidonic acid metabolic, cAMP, Wnt, and other signaling pathways. The qRT-PCR results of eight selected lncRNAs and target genes were consistent with the sequencing result, which indicated our data were reliable. Through the analysis of the weighted gene co-expression network, 13 co-expression modules were identified. The turquoise module contained a large number of differential expressed lncRNAs, which were mainly enriched in the PI3K-Akt signaling pathway and cAMP signaling pathway. The predicted LOC102172600 and LOC102191729 might affect the development of hair follicles and the curvature of wool by regulating the target genes. Our study provides novel insights into the potential roles of lncRNAs in the regulation of wool bending. In addition, the study offers a theoretical basis for further study of goat wool growth, so as to be a guidance and reference for breeding and improvement in the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuntao Shi ◽  
Yingying Zhuang ◽  
Jialing Zhang ◽  
Mengxue Chen ◽  
Shangnong Wu

Objective. Although noncoding RNAs, especially the microRNAs, have been found to play key roles in CRC development in intestinal tissue, the specific mechanism of these microRNAs has not been fully understood. Methods. GEO and TCGA database were used to explore the microRNA expression profiles of normal mucosa, adenoma, and carcinoma. And the differential expression genes were selected. Computationally, we built the SVM model and multivariable Cox regression model to evaluate the performance of tumorigenic microRNAs in discriminating the adenomas from normal tissues and risk prediction. Results. In this study, we identified 20 miRNA biomarkers dysregulated in the colon adenomas. The functional enrichment analysis showed that MAPK activity and MAPK cascade were highly enriched by these tumorigenic microRNAs. We also investigated the target genes of the tumorigenic microRNAs. Eleven genes, including PIGF, TPI1, KLF4, RARS, PCBP2, EIF5A, HK2, RAVER2, HMGN1, MAPK6, and NDUFA2, were identified to be frequently targeted by the tumorigenic microRNAs. The high AUC value and distinct overall survival rates between the two risk groups suggested that these tumorigenic microRNAs had the potential of diagnostic and prognostic value in CRC. Conclusions. The present study revealed possible mechanisms and pathways that may contribute to tumorigenesis of CRC, which could not only be used as CRC early detection biomarkers, but also be useful for tumorigenesis mechanism studies.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 545 ◽  
Author(s):  
Wei Wu ◽  
Lingxiang Wu ◽  
Mengyan Zhu ◽  
Ziyu Wang ◽  
Min Wu ◽  
...  

Somatic mutations in 3′-untranslated regions (3′UTR) do not alter amino acids and are considered to be silent in cancers. We found that such mutations can promote tumor progression by altering microRNA (miRNA) targeting efficiency and consequently affecting miRNA–mRNA interactions. We identified 67,159 somatic mutations located in the 3′UTRs of messenger RNAs (mRNAs) which can alter miRNA–mRNA interactions (functional somatic mutations, funcMutations), and 69.3% of these funcMutations (the degree of energy change > 12 kcal/mol) were identified to significantly promote loss of miRNA-mRNA binding. By integrating mRNA expression profiles of 21 cancer types, we found that the expression of target genes was positively correlated with the loss of absolute affinity level and negatively correlated with the gain of absolute affinity level. Functional enrichment analysis revealed that genes carrying funcMutations were significantly enriched in the MAPK and WNT signaling pathways, and analysis of regulatory modules identified eighteen miRNA modules involved with similar cellular functions. Our findings elucidate a complex relationship between miRNA, mRNA, and mutations, and suggest that 3′UTR mutations may play an important role in tumor development.


2021 ◽  
Vol 11 ◽  
Author(s):  
Aolin Li ◽  
Ying Gan ◽  
Congcong Cao ◽  
Binglei Ma ◽  
Quan Zhang ◽  
...  

N6-Methyladenosine (m6A) is the most widespread internal RNA modification in several species. In spite of latest advances in researching the biological roles of m6A, its function in the development and progression of bladder cancer remains unclear. In this study, we used MeRIPty -55-seq and RNA-seq methods to obtain a comprehensive transcriptome-wide m6A profiling and gene expression pattern in bladder cancer and paired normal adjacent tissues. Our findings showed that there were 2,331 hypomethylated and 3,819 hypermethylated mRNAs, 32 hypomethylated and 105 hypermethylated lncRNAs, and 15 hypomethylated and 238 hypermethylated circRNAs in bladder cancer tissues compared to adjacent normal tissues. Furthermore, m6A is most often harbored in the coding sequence (CDS), with some near the start and stop codons between two groups. Functional enrichment analysis revealed that differentially methylated mRNAs, lncRNAs, and circRNAs were mostly enriched in transcriptional misregulation in cancer and TNF signaling pathway. We also found that different m6A methylation levels of gene might regulate its expression. In summary, our results for the first time provide an m6A landscape of human bladder cancer, which expand the understanding of m6A modifications and uncover the regulation of mRNAs, lncRNAs, and circRNAs through m6A modification in bladder cancer.


2019 ◽  
Vol 3 (s1) ◽  
pp. 111-111 ◽  
Author(s):  
Andrea Comba ◽  
Patrick Dunn ◽  
Anna E Argento ◽  
Padma Kadiyala ◽  
Sebastien Motsch ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Oncostreams represent a novel growth pattern of GBM. In this study we uncovered the cellular and molecular mechanism that regulates the oncostreams function in GBM growth and invasion. METHODS/STUDY POPULATION: We studied oncostreams organization and function using genetically engineered mouse gliomas models (GEMM), mouse primary patient derived GBM model and human glioma biopsies. We evaluated the molecular landscape of oncostreams by laser capture microdissection (LCM) followed by RNA-Sequencing and bioinformatics analysis. RESULTS/ANTICIPATED RESULTS: Oncostreams are multicellular structures of 10-20 cells wide and 2-400 μm long. They are distributed throughout the tumors in mouse and human GBM. Oncostreams are heterogeneous structures positive for GFAP, Nestin, Olig2 and Iba1 cells and negative for Neurofilament. Using GEMM we found a negative correlation between oncostream density and animal survival. Moreover, examination of patient’s glioma biopsies evidenced that oncostreams are present in high grade but no in low grade gliomas. This suggests that oncostreams may play a role in tumor malignancy. Our data also indicated that oncostreams aid local invasion of normal brain. Transcriptome analysis of oncostreams revealed 43 differentially expressed (DE) genes. Functional enrichment analysis of DE genes showed that “collagen catabolic processes”, “positive regulation of cell migration”, and “extracellular matrix organization” were the most over-represented GO biological process. Network analysis indicated that Col1a1, ACTA2, MMP9 and MMP10 are primary target genes. These genes were also overexpressed in more malignant tumors (WT-IDH) compared to the less malignant (IDH1- R132H) tumors. Confocal time lapse imagining of 3D tumor slices demonstrated that oncostreams display a collective motion pattern within gliomas that has not been seen before. DISCUSSION/SIGNIFICANCE OF IMPACT: In summary, oncostreams are anatomically and molecularly distinctive, regulate glioma growth and invasion, display collective motion and are regulated by the extracellular matrix. We propose oncostreams as novel pathological markers valuable for diagnosis, prognosis and designing therapeutics for GBM patients.


2020 ◽  
Vol 26 (7) ◽  
pp. 635-648
Author(s):  
Zhixiong Zhou ◽  
Guojing Gu ◽  
Yichen Luo ◽  
Wenjie Li ◽  
Bowen Li ◽  
...  

As the molecular mechanisms of Brucella ovis pathogenicity are not completely clear, we have applied a transcriptome approach to identify the differentially expressed genes (DEGs) in RAW264.7 macrophage infected with B. ovis. The DEGs related to immune pathway were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional enrichment analysis. Quantitative real-time PCR (qRT-PCR) was performed to validate the transcriptome sequencing data. In total, we identified 337 up-regulated and 264 down-regulated DEGs in B. ovis-infected group versus mock group. Top 20 pathways were enriched by KEGG analysis and 20 GO by functional enrichment analysis in DEGs involved in the molecular function, cellular component, and biological process and so on, which revealed multiple immunological pathways in RAW264.7 macrophage cells in response to B. ovis infection, including inflammatory response, immune system process, immune response, cytokine activity, chemotaxis, chemokine-mediated signaling pathway, chemokine activity, and CCR chemokine receptor binding. qRT-PCR results showed Ccl2 (ENSMUST00000000193), Ccl2 (ENSMUST00000124479), Ccl3 (ENSMUST00000001008), Hmox1 (ENSMUST00000005548), Hmox1 (ENSMUST00000159631), Cxcl2 (ENSMUST00000075433), Cxcl2 (ENSMUST00000200681), Cxcl2 (ENSMUST00000200919), and Cxcl2 (ENSMUST00000202317). Our findings firstly elucidate the pathways involved in B. ovis-induced host immune response, which may lay the foundation for revealing the bacteria–host interaction and demonstrating the pathogenic mechanism of B. ovis.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yu Sun ◽  
Sheng-Hua Li ◽  
Ji-Wen Cheng ◽  
Gang Chen ◽  
Zhi-Guang Huang ◽  
...  

Background. The expression and mechanism of microRNA-205 (miRNA-205) in prostate cancer (PCa) and its bone metastasis remain controversial. Materials and Methods. The expression and discriminating capability of miRNA-205 were assessed by drawing a forest plot and a summarized receiver operating characteristic (SROC) curve, using data available from 27 miRNA-array and miRNA-sequencing datasets. The miRNA-205 target genes were acquired from online prediction tools, differentially upregulated genes in PCa, and differentially expressed genes (DEGs) after miRNA-205 transfection into PCa cell lines. Functional enrichment analysis was conducted to explore the biological mechanism of miRNA-205 targets. Immunohistochemistry (IHC) was applied to verify the protein level of the hub gene. Results. The expression of miRNA-205 in the PCa group (1,461 samples) was significantly lower than that in the noncancer group (510 samples), and the downregulation of miRNA-205 showed excellent sensitivity and specificity in differentiating between the two groups. In bone metastatic PCa, the miRNA-205 level was further reduced than in nonbone metastatic PCa, and it showed a good capability in distinguishing between the two groups. In total, 153 miRNA-205 targets were screened through the three aforementioned methods. Based on the results of functional enrichment analysis, the targets of miRNA-205 were mainly enriched during chromosome segregation and phospholipid-translocating ATPase activity and in the spindle microtubule and the p53 signaling pathway. CDK1 had the highest connectivity in the PPI network analysis and was screened as one of the hub genes. A statistically significant negative correlation between miRNA-205 and CDK1 was observed. The expression of CDK1 in PCa samples was pronouncedly upregulated in terms of both the mRNA level and the protein level when compared with noncancer samples. Conclusion. miRNA-205 may play a vital role in PCa tumorigenesis and bone metastasis by targeting CDK1.


Sign in / Sign up

Export Citation Format

Share Document