rna modification
Recently Published Documents


TOTAL DOCUMENTS

565
(FIVE YEARS 390)

H-INDEX

43
(FIVE YEARS 15)

2022 ◽  
Author(s):  
Bowen Song ◽  
Daiyun Huang ◽  
Yuxin Zhang ◽  
Zhen Wei ◽  
Jionglong Su ◽  
...  

As the most pervasive epigenetic marker present on mRNA and lncRNA, N6-methyladenosine (m6A) RNA methylation has been shown to participate in essential biological processes. Recent studies revealed the distinct patterns of m6A methylome across human tissues, and a major challenge remains in elucidating the tissue-specific presence and circuitry of m6A methylation. We present here a comprehensive online platform m6A-TSHub for unveiling the context-specific m6A methylation and genetic mutations that potentially regulate m6A epigenetic mark. m6A-TSHub consists of four core components, including (1) m6A-TSDB: a comprehensive database of 184,554 functionally annotated m6A sites derived from 23 human tissues and 499,369 m6A sites from 25 tumor conditions, respectively; (2) m6A-TSFinder: a web server for high-accuracy prediction of m6A methylation sites within a specific tissue from RNA sequences, which was constructed using multi-instance deep neural networks with gated attention; (3) m6A-TSVar: a web server for assessing the impact of genetic variants on tissue-specific m6A RNA modification; and (4) m6A-CAVar: a database of 587,983 TCGA cancer mutations (derived from 27 cancer types) that were predicted to affect m6A modifications in the primary tissue of cancers. The database should make a useful resource for studying the m6A methylome and genetic factor of epitranscriptome disturbance in a specific tissue (or cancer type). m6A-TSHub is accessible at: www.xjtlu.edu.cn/biologicalsciences/m6ats.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yuxu Feng ◽  
Chenchen Li ◽  
Siwen Liu ◽  
Fei Yan ◽  
Yue Teng ◽  
...  

Lung cancer is one of the most fatal malignancies and the leading cause of cancer death worldwide. β-Elemene, a well-known anticancer drug, has drawn a great deal of attention from researchers attributed to its limited side impacts. N6-Methyladenosine (m6A) modification is the most common RNA modification and plays a vital role in the pathogenesis of multiple tumors. However, the functional link between β-elemene and the m6A modification in lung cancer development remains unexplored. In this study, we investigated whether m6A modification was responsible for the impacts of β-elemene on lung cancer. Firstly, outcomes suggested that β-elemene restrained the malignant behaviors of A549 together with H1299 cells. Thereafter, we observed that β-elemene markedly regulated METTL3, YTHDF1, and YTHDC1 among various m6A modulators. METTL3 was selected for further study because of its oncogenic function in lung cancer. RT-qRCR and western blot assays exhibited that the mRNA and protein expression levels of METTL3 were lessened by the administration of β-elemene. Mechanistically, β-elemene exerted the restrictive impacts on the cell growth of lung cancer in vivo and in vitro through targeting METTL3. More importantly, β-elemene contributed to the augmented PTEN expression via suppressing its m6A modification. To sum up, we provided strong clues that β-elemene promoted PTEN expression to retard lung cancer progression by the regulation of METTL3-mediated m6A modification.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Fangzhou Guo ◽  
Teng Deng ◽  
Liu Shi ◽  
Pinghua Wu ◽  
Jun Yan ◽  
...  

Astrocytoma (AS) is the most ubiquitous primary malignancy of the central nervous system (CNS). The vital involvement of the N6-methyladenosine (m6A) RNA modification in the growth of multiple human tumors is known. This study entailed probing m6A regulators with AS prognosis to construct a risk prediction model (RS) for potential clinical use. A total of 579 AS patients’ (of the Chinese Glioma Genome Atlas,CGGA) data and the expression of 12 published m6A-related genes were included in this study. Cox and selection operator (LASSO) regression analyses for independent prognostic factors and multifactor Cox analysis established an R.S. model to predict the AS patient prognosis. This was subject to verification employing 331 samples from the TCGA data set followed by gene ontology and pathway enrichment study with gene set enrichment analysis (GSEA). The R.S. constructed with three m6A genes inclusive of WTAP, RBM15, and YTHDF2 emerged as independent prognostic factors in AS patients with vital involvement in the advancement and development of the malignancy. In a nutshell, this work reported an m6A-related gene risk model to predict the prognosis of AS patients to pave the way for discerning diagnostic and prognostic biomarkers. Further corroboration employing relevant wet-lab assays of this model is warranted.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12719
Author(s):  
Jie Cui ◽  
Junli Liu ◽  
Junliang Li ◽  
Dayou Cheng ◽  
Cuihong Dai

In eukaryotes, N6-methyladenosine (m6A) is the most abundant and highly conserved RNA modification. In vivo, m6A demethylase dynamically regulates the m6A level by removing the m6A marker where it plays an important role in plant growth, development and response to abiotic stress. The confirmed m6A demethylases in Arabidopsis thaliana include ALKBH9B and ALKBH10B, both belonging to the ALKB family. In this study, BvALKB family members were identified in sugar beet genome-wide database, and their conserved domains, gene structures, chromosomal locations, phylogeny, conserved motifs and expression of BvALKB genes were analyzed. Almost all BvALKB proteins contained the conserved domain of 2OG-Fe II-Oxy. Phylogenetic analysis suggested that the ten proteins were clustered into five groups, each of which had similar motifs and gene structures. Three Arabidopsis m6A demethylase-homologous proteins (BvALKBH6B, BvALKBH8B and BvALKBH10B) were of particular interest in our study. Expression profile analysis showed that almost all genes were up-regulated or down-regulated to varying degrees under salt stress. More specifically, BvALKBH10B homologous to AtALKBH10B was significantly up-regulated, suggesting that the transcriptional activity of this gene is responsive to salt stress. This study provides a theoretical basis for further screening of m6A demethylase in sugar beet, and also lays a foundation for studying the role of ALKB family proteins in growth, development and response to salinity stress.


2021 ◽  
Author(s):  
Long-Bin Zhang ◽  
Ting-Ting Qiu ◽  
Wu-Wei-Jie Yang

N6-methyladenosine (m6A) abundantly exists in the cerebral cortex, and is emerging as an essential factor in cortical development and function. As the m6A binding site appears to be dynamically methylated in different RNA regions at the temporal-specific developing stage, it is of value to distinguish the unique character of region- and temporal-specific m6A. Herein, we analyzed the status of temporal-specific m6A within RNA 5’ untranslated region (5’UTR) using m6A-methylated sequencing data and transcriptomic sequencing data from 12.5-13-day embryonic cerebral cortices and 14-day postnatal ones. We identified sorts of RNAs that are uniquely m6A-methylated in the 5’UTR region and sorted them into specific neurological processes. Compared with 3’UTR-m6A-methylated RNAs, 5’UTR-m6A-methylated RNAs showed unique functions and mechanisms in regulating cortical development, especially through the pathway of mRNA transport and surveillance. Moreover, the 5’UTR-specific m6A was associated with neurological disorders as well. The FoxO signaling pathway was then focused by these pathogenic 5’UTR-m6A-methylated RNAs, and explored to be involved in the determination of neurological disorders. Additionally, the 5’UTR-m6A-modification patterns and transcriptional patterns play independent but cohesive roles in the developing cortices. Our study emphasizes the importance of 5’UTR-specific m6A in the developing cortex and provides an informative reference for future studies of 5’UTR-specific m6A in normal cortical development and neurological disorders.


Author(s):  
Da-Hong Chen ◽  
Ji-Gang Zhang ◽  
Chuan-Xing Wu ◽  
Qin Li

Recently, N6-methyl-adenosine (m6A) ribonucleic acid (RNA) modification, a critical and common internal RNA modification in higher eukaryotes, has generated considerable research interests. Extensive studies have revealed that non-coding RNA m6A modifications (e.g. microRNAs, long non-coding RNAs, and circular RNAs) are associated with tumorigenesis, metastasis, and other tumour characteristics; in addition, they are crucial molecular regulators of cancer progression. In this review, we discuss the relationship between non-coding RNA m6A modification and cancer progression from the perspective of various cancers. In particular, we focus on important mechanisms in tumour progression such as proliferation, apoptosis, invasion and metastasis, tumour angiogenesis. In addition, we introduce clinical applications to illustrate more vividly that non-coding RNA m6A modification has broad research prospects. With this review, we aim to summarize the latest insights and ideas into non-coding RNA m6A modification in cancer progression and targeted therapy, facilitating further research.


2021 ◽  
Author(s):  
Andrew D Bailey ◽  
Jason Talkish ◽  
Hongxu Ding ◽  
Haller Igel ◽  
Alejandra Duran ◽  
...  

Nucleotides in RNA and DNA are chemically modified by numerous enzymes that alter their function. Eukaryotic ribosomal RNA (rRNA) is modified at more than 100 locations, particularly at highly conserved and functionally important nucleotides. During ribosome biogenesis, modifications are added at various stages of assembly. The existence of differently modified classes of ribosomes in normal cells is unknown because no method exists to simultaneously evaluate the modification status at all sites, within a single rRNA molecule. Using a combination of yeast genetics and nanopore direct RNA sequencing, we developed a reliable method to track the modification status of single rRNA molecules at 37 sites in 18S rRNA and 73 sites in 25S rRNA. We use our method to characterize patterns of modification heterogeneity and identify concerted modification of nucleotides found near functional centers of the ribosome. Distinct undermodified subpopulations of rRNAs accumulate upon loss of Dbp3 or Prp43 RNA helicases, suggesting overlapping roles in ribosome biogenesis. Modification profiles are surprisingly resistant to change in response to many genetic and environmental conditions that affect translation, ribosome biogenesis, and pre-mRNA splicing. The ability to capture single molecule RNA modification profiles provides new insights into the roles of nucleotide modifications in RNA function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haishuang Tang ◽  
Zhangwei Zeng ◽  
Chenghao Shang ◽  
Qiang Li ◽  
Jianmin Liu

Atherosclerosis, characterized by atherosclerotic plaques, is a complex pathological process that involves different cell types and can be seen as a chronic inflammatory disease. In the advanced stage, the ruptured atherosclerotic plaque can induce deadly accidents including ischemic stroke and myocardial infarction. Epigenetics regulation, including DNA methylation, histone modification, and non-coding RNA modification. maintains cellular identity via affecting the cellular transcriptome. The epigenetic modification process, mediating by epigenetic enzymes, is dynamic under various stimuli, which can be reversely altered. Recently, numerous studies have evidenced the close relationship between atherosclerosis and epigenetic regulations in atherosclerosis, providing us with a novel perspective in researching mechanisms and finding novel therapeutic targets of this serious disease. Here, we critically review the recent discoveries between epigenetic regulation mechanisms in atherosclerosis.


2021 ◽  
Author(s):  
Olatz Ruiz-Larrabeiti ◽  
Roberto Benoni ◽  
Viacheslav Zemlianski ◽  
Nikola Hanisakova ◽  
Marek Schwarz ◽  
...  

Chemical modifications of RNA affect essential properties of transcripts, such as their translation, localization and stability. 5-end RNA capping with the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD+) has been discovered in organisms ranging from bacteria to mammals. However, the hypothesis that NAD+ capping might be universal in all domains of life has not been proven yet, as information on this RNA modification is missing for Archaea. Likewise, this RNA modification has not been studied in the clinically important Mycobacterium genus. Here, we demonstrate that NAD+ capping occurs in the archaeal and mycobacterial model organisms Methanosarcina barkeri and Mycobacterium smegmatis. Moreover, we identify the NAD+-capped transcripts in M. smegmatis, showing that this modification is more prevalent in stationary phase, and revealing that mycobacterial NAD+-capped transcripts include non-coding small RNAs, such as Ms1. Furthermore, we show that mycobacterial RNA polymerase incorporates NAD+ into RNA, and that the genes of NAD+-capped transcripts are preceded by promoter elements compatible with SigA/SigF dependent expression. Taken together, our findings demonstrate that NAD+ capping exists in the archaeal domain of life, suggesting that it is universal to all living organisms, and define the NAD+-capped RNA landscape in mycobacteria, providing a basis for its future exploration.


Sign in / Sign up

Export Citation Format

Share Document