scholarly journals Gain Enhancement of a Circularly-Polarized Patch Antenna with a Double-Layered Superstrate for Wireless LAN

Author(s):  
Sangrok Lee

This article focuses on designing a single-feed circularly polarized equilateral triangular microstrip patch antenna. The axial ratio bandwidth of the antenna is around 190 MHz. The antenna has been etched at specific locations for achieving circular polarization. The suppression of surface waves is also being focused upon for gain enhancement. The array of cylindrical metallic pins is embedded near the radiating side of the patch antenna. The gain enhancement of around 3.23 dB is observed. The antenna is designed for use in satellite communications.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 191-199
Author(s):  
M. K. Verma ◽  
Binod K. Kanaujia ◽  
J. P. Saini ◽  
Padam S. Saini

AbstractA broadband circularly polarized slotted square patch antenna with horizontal meandered strip (HMS) is presented and studied. The HMS feeding technique provides the good impedance matching and broadside symmetrical radiation patterns. A set of cross asymmetrical slots are etched on the radiating patch to realize the circular polarization. An electrically small stub is added on the edge of the antenna for further improvement in performance. Measured 10-dB impedance bandwidth (IBW) and 3-dB axial ratio bandwidth (ARBW) of the proposed antenna are 32.31 % (3.14–4.35 GHz) and 20.91 % (3.34–4.12 GHz), respectively. The gain of the antenna is varied from 3.5 to 4.86dBi within 3-dB ARBW. Measured results matched well with the simulated results.


Sign in / Sign up

Export Citation Format

Share Document