scholarly journals Continuous Oil Spill Remote Sensing and Autonomous Monitoring

Author(s):  
David B. Chenault ◽  
Justin P. Vaden

ABSTRACT The Pyxis camera is a polarized thermal infrared sensor that provides area detection at all times of day in a variety of conditions. It exploits the difference in oil and water material properties rather than temperature differences and is therefore far more robust for detection and false alarm rejection. It is small and has been integrated with drones, mounted at fixed sites, and used as a handheld for spill detection and monitoring. Pyxis has been tested extensively at Ohmsett and successfully demonstrated for oil detection at the MC20 site and at Santa Barbara in both manned and unmanned aircraft. Pyxis has now been integrated into the Polarization Oil Detection System (PODS) for autonomous oil spill detection and monitoring. PODS essentially operates as a web camera and continuously monitors the user defined area for oil entering the scene while adapting to changing environmental conditions. PODS is well-suited for monitoring fixed sites at processing or transfer points, unmanned rigs and platforms, and along waterways and pipelines.

1969 ◽  
Vol 1969 (1) ◽  
pp. 297-307
Author(s):  
L.G. Swaby ◽  
A.F. Forziati

Abstract An overview of remote sensing methods is presented and illustrated with data taken at the Santa Barbara oil spill The conclusion is reached that such methods possess monitoring capability but so far the ability to identify the slick material as oil has not been demonstrated. The advantages and disadvantages of each method are briefly discussed.


2013 ◽  
Vol 316-317 ◽  
pp. 580-585 ◽  
Author(s):  
Jian Liu ◽  
Sheng Feng Zhu

Oil spill detection has important significance for the oceanic environmental protection. With the rapid development of the satellite remote sensing, remote sensing technique has become one of the important and effective tools in oil spill detection. This paper discussed the method of the offshore surface oil spill detection using Synthetic Aperture Radar (SAR). The oil spill detection systems used at home and abroad is evaluated. Finally, the feasibility of the oil spill detection system based on the satellite remote sensing developed by China National Offshore Oil Corporation is studied.


Author(s):  
Rasol Murtadha Najah

This article discusses the application of methods to enhance the knowledge of experts to build a decision-making model based on the processing of physical data on the real state of the environment. Environmental parameters determine its ecological state. To carry out research in the field of expert assessment of environmental conditions, the analysis of known works in this field is carried out. The results of the analysis made it possible to justify the relevance of the application of analytical, stochastic models and models based on methods of enhancing the knowledge of experts — experts. It is concluded that the results of using analytical and stochastic objects are inaccurate, due to the complexity and poor mathematical description of the objects. The relevance of developing information support for an expert assessment of environmental conditions is substantiated. The difference of this article is that based on the analysis of the application of expert methods for assessing the state of the environment, a fuzzy logic adoption model and information support for assessing the environmental state of the environment are proposed. The formalization of the parameters of decision-making models using linguistic and fuzzy variables is considered. The formalization of parameters of decision-making models using linguistic and fuzzy variables was considered. The model’s description of fuzzy inference is given. The use of information support for environment state assessment is shown on the example of experts assessing of the land desertification stage.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 180
Author(s):  
Eigo Tochimoto ◽  
Mario Marcello Miglietta ◽  
Leonardo Bagaglini ◽  
Roberto Ingrosso ◽  
Hiroshi Niino

Characteristics of extratropical cyclones that cause tornadoes in Italy are investigated. Tornadoes between 2007 and 2016 are analyzed, and statistical analysis of the associated cyclone structures and environments is performed using the JRA-55 reanalysis. Tornadoes are distributed sporadically around the cyclone location within a window of 10° × 10°. The difference in the cyclone tracks partially explains the seasonal variability in the distribution of tornadoes. The highest number of tornadoes occur south of the cyclone centers, mainly in the warm sector, while a few are observed along the cold front. Composite mesoscale parameters are examined to identify the environmental conditions associated with tornadoes in different seasons. Potential instability is favorable to tornado development in autumn. The highest convective available potential energy (CAPE) in this season is associated with relatively high-temperature and humidity at low-levels, mainly due to the strong evaporation over the warm Mediterranean Sea. Upper-level potential vorticity (PV) anomalies and the associated cold air reduce the static stability above the cyclone center, mainly in spring and winter. On average, the values of CAPE are lower than for US tornadoes and comparable with those occurring in Japan, while storm relative helicity (SREH) is comparable with US tornadoes and higher than Japanese tornadoes, indicating that the environmental conditions for Italian tornadoes have peculiar characteristics. Overall, the conditions emerging in this study are close to the high-shear, low-CAPE environments typical of cool-season tornadoes in the Southeastern US.


2021 ◽  
Vol 13 (11) ◽  
pp. 2044
Author(s):  
Marcos R. A. Conceição ◽  
Luis F. F. Mendonça ◽  
Carlos A. D. Lentini ◽  
André T. C. Lima ◽  
José M. Lopes ◽  
...  

A set of open-source routines capable of identifying possible oil-like spills based on two random forest classifiers were developed and tested with a Sentinel-1 SAR image dataset. The first random forest model is an ocean SAR image classifier where the labeling inputs were oil spills, biological films, rain cells, low wind regions, clean sea surface, ships, and terrain. The second one was a SAR image oil detector named “Radar Image Oil Spill Seeker (RIOSS)”, which classified oil-like targets. An optimized feature space to serve as input to such classification models, both in terms of variance and computational efficiency, was developed. It involved an extensive search from 42 image attribute definitions based on their correlations and classifier-based importance estimative. This number included statistics, shape, fractal geometry, texture, and gradient-based attributes. Mixed adaptive thresholding was performed to calculate some of the features studied, returning consistent dark spot segmentation results. The selected attributes were also related to the imaged phenomena’s physical aspects. This process helped us apply the attributes to a random forest, increasing our algorithm’s accuracy up to 90% and its ability to generate even more reliable results.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Fengdi Li ◽  
Zhenyu Liu ◽  
Weixing Shen ◽  
Yan Wang ◽  
Yunlu Wang ◽  
...  

2021 ◽  
Vol 973 (7) ◽  
pp. 21-31
Author(s):  
Е.А. Rasputina ◽  
A.S. Korepova

The mapping and analysis of the dates of onset and melting the snow cover in the Baikal region for 2000–2010 based on eight-day MODIS “snow cover” composites with a spatial resolution of 500 m, as well as their verification based on the data of 17 meteorological stations was carried out. For each year of the decennary under study, for each meteorological station, the difference in dates determined from the MODIS data and that of weather stations was calculated. Modulus of deviations vary from 0 to 36 days for onset dates and from 0 to 47 days – for those of stable snow cover melting, the average of the deviation modules for all meteorological stations and years is 9–10 days. It is assumed that 83 % of the cases for the onset dates can be considered admissible (with deviations up to 16 days), and 79 % of them for the end dates. Possible causes of deviations are analyzed. It was revealed that the largest deviations correspond to coastal meteorological stations and are associated with the inhomogeneity of the characteristics of the snow cover inside the pixels containing water and land. The dates of onset and melting of a stable snow cover from the images turned out to be later than those of weather stations for about 10 days. First of all (from the end of August to the middle of September), the snow is established on the tops of the ranges Barguzinsky, Baikalsky, Khamar-Daban, and later (in late November–December) a stable cover appears in the Barguzin valley, in the Selenga lowland, and in Priolkhonye. The predominant part of the Baikal region territory is covered with snow in October, and is released from it in the end of April till the middle of May.


2021 ◽  
Author(s):  
Audra Ligafinza ◽  
Farasdaq Muchibbus Sajjad ◽  
Mohammad Abdul Jabbar ◽  
Anggia Fatmawati ◽  
Alvin Derry Wirawan ◽  
...  

Abstract During the blowout event, it is critical to track the oil spill to minimize environmental damage and optimize restoration cost. In this paper, we deliver our success story in handling oil spill from recent experiences. We utilize remote sensing technologies to establish our analysis and plan the remediation strategies. We also comprehensively discuss the techniques to analyze big data from the satellites, to utilize the downloaded data for forecasting, and to align the satellite information with restoration strategies. PHE relies on its principle to maintain minimum damage and ensures safety by dividing the steps into several aspects of monitoring, response (offshore and onshore), shoreline management and waste management. PHE utilizes latest development in survey by using satellite imaging, survey boat, chopper and UAV drone. Spill containment is done using several layers of oil boom to recover oil spill, complemented with skimmers and storage tanks. PHE encourages shoreline remediation using nets and manual recovery for capturing oil sludge. Using this combination of technologies, PHE is able to model and anticipate oil spill movement from the source up until the farthest shoreline. This enables real time monitoring and handling, therefore minimum environmental damage is ensured. PHE also employs prudent engineering design based on real time field condition in order to ensure the equipment are highly suited for the condition, as well as ensuring good supply chain of the material availability. This publication addresses the first offshore blowout mitigation and handling in Indonesia that uses novel technologies such as static oil boom, satellite imaging and integrated effort in handling shoreline damage. It is hoped that the experience can be replicated for other offshore operating contractors in Indonesia in designing blowout remediation.


2013 ◽  
Vol 473 ◽  
pp. 231-234
Author(s):  
Su Hua Chen ◽  
Xu Fang ◽  
Yong Guang Liu ◽  
Jun Wang

The design attempts for thefirst time to realize face locating system on the FPGA platform using themethod combined initiative infrared source with image difference. Through imagedifference process, the system obtains a difference image without backgroundinterference which takes the face as the main body. It can obtain the personface boundary by projecting the difference image in the horizontal and verticaldirection. The system processing speed amount s to the video source frequency25 frame per second, satisfying the timely request; the method of initiativeinfrared source makes the exterior have small influence on the image andguarantees the robustness of the system.


2015 ◽  
Vol 93 (1-2) ◽  
pp. 294-297 ◽  
Author(s):  
Jan Svejkovsky ◽  
Alun Lewis ◽  
Judd Muskat ◽  
Jørn Harald S. Andersen ◽  
Steve Benz ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document